基于面部区域的面部表情识别

Khadija Lekdioui, Y. Ruichek, R. Messoussi, Youness Chaabi, R. Touahni
{"title":"基于面部区域的面部表情识别","authors":"Khadija Lekdioui, Y. Ruichek, R. Messoussi, Youness Chaabi, R. Touahni","doi":"10.1109/ATSIP.2017.8075517","DOIUrl":null,"url":null,"abstract":"This paper proposes a facial expression recognition method based on a novel facial decomposition. First, seven regions of interest (ROI), representing the main components of face (left eyebrow, right eyebrow, left eye, right eye, between eyebrows, nose and mouth), are extracted using facial landmarks detected by IntraFace algorithm. Then, different local descriptors, such as LBP, CLBP, LTP and Dynamic LTP, are used to extract features. Finally, feature vector, representing face image, is fed into a multiclass support vector machine to achieve the recognition task. Experimental results on two public datasets show that the proposed method outperforms state of the art methods based on other facial decompositions.","PeriodicalId":259951,"journal":{"name":"2017 International Conference on Advanced Technologies for Signal and Image Processing (ATSIP)","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":"{\"title\":\"Facial expression recognition using face-regions\",\"authors\":\"Khadija Lekdioui, Y. Ruichek, R. Messoussi, Youness Chaabi, R. Touahni\",\"doi\":\"10.1109/ATSIP.2017.8075517\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a facial expression recognition method based on a novel facial decomposition. First, seven regions of interest (ROI), representing the main components of face (left eyebrow, right eyebrow, left eye, right eye, between eyebrows, nose and mouth), are extracted using facial landmarks detected by IntraFace algorithm. Then, different local descriptors, such as LBP, CLBP, LTP and Dynamic LTP, are used to extract features. Finally, feature vector, representing face image, is fed into a multiclass support vector machine to achieve the recognition task. Experimental results on two public datasets show that the proposed method outperforms state of the art methods based on other facial decompositions.\",\"PeriodicalId\":259951,\"journal\":{\"name\":\"2017 International Conference on Advanced Technologies for Signal and Image Processing (ATSIP)\",\"volume\":\"46 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"23\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 International Conference on Advanced Technologies for Signal and Image Processing (ATSIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ATSIP.2017.8075517\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Advanced Technologies for Signal and Image Processing (ATSIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ATSIP.2017.8075517","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

摘要

提出了一种基于人脸分解的人脸表情识别方法。首先,利用IntraFace算法检测到的面部特征提取7个感兴趣区域(ROI),分别代表人脸的主要组成部分(左眉、右眉、左眼、右眼、眉间、鼻口);然后,使用LBP、CLBP、LTP和Dynamic LTP等不同的局部描述符提取特征。最后,将代表人脸图像的特征向量输入到多类支持向量机中,完成人脸识别任务。在两个公开数据集上的实验结果表明,该方法优于其他基于人脸分解的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Facial expression recognition using face-regions
This paper proposes a facial expression recognition method based on a novel facial decomposition. First, seven regions of interest (ROI), representing the main components of face (left eyebrow, right eyebrow, left eye, right eye, between eyebrows, nose and mouth), are extracted using facial landmarks detected by IntraFace algorithm. Then, different local descriptors, such as LBP, CLBP, LTP and Dynamic LTP, are used to extract features. Finally, feature vector, representing face image, is fed into a multiclass support vector machine to achieve the recognition task. Experimental results on two public datasets show that the proposed method outperforms state of the art methods based on other facial decompositions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Speckle noise reduction in digital speckle pattern interferometry using Riesz wavelets transform A new GLBSIF descriptor for face recognition in the uncontrolled environments Saliency attention and sift keypoints combination for automatic target recognition on MSTAR dataset A comparative study of interworking methods among differents rats in 5G context Diagnosis of osteoporosis disease from bone X-ray images with stacked sparse autoencoder and SVM classifier
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1