Jianyong Zhang, A. Sivasubramaniam, H. Franke, N. Gautam, Yanyong Zhang, S. Nagar
{"title":"综合TPC-H的典型I/O工作负载","authors":"Jianyong Zhang, A. Sivasubramaniam, H. Franke, N. Gautam, Yanyong Zhang, S. Nagar","doi":"10.1109/HPCA.2004.10019","DOIUrl":null,"url":null,"abstract":"Synthesizing I/O requests that can accurately capture workload behavior is extremely valuable for the design, implementation and optimization of disk subsystems. This paper presents a synthetic workload generator for TPC-H, an important decision-support commercial workload, by completely characterizing the arrival and access patterns of its queries. We present a novel approach for parameterizing the behavior of inter-mingling streams of sequential requests, and exploit correlations between multiple attributes of these requests, to generate disk block-level traces that are shown to accurately mimic the behavior of a real trace in terms of response time characteristics for each TPC-H query.","PeriodicalId":145009,"journal":{"name":"10th International Symposium on High Performance Computer Architecture (HPCA'04)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"55","resultStr":"{\"title\":\"Synthesizing Representative I/O Workloads for TPC-H\",\"authors\":\"Jianyong Zhang, A. Sivasubramaniam, H. Franke, N. Gautam, Yanyong Zhang, S. Nagar\",\"doi\":\"10.1109/HPCA.2004.10019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Synthesizing I/O requests that can accurately capture workload behavior is extremely valuable for the design, implementation and optimization of disk subsystems. This paper presents a synthetic workload generator for TPC-H, an important decision-support commercial workload, by completely characterizing the arrival and access patterns of its queries. We present a novel approach for parameterizing the behavior of inter-mingling streams of sequential requests, and exploit correlations between multiple attributes of these requests, to generate disk block-level traces that are shown to accurately mimic the behavior of a real trace in terms of response time characteristics for each TPC-H query.\",\"PeriodicalId\":145009,\"journal\":{\"name\":\"10th International Symposium on High Performance Computer Architecture (HPCA'04)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-02-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"55\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"10th International Symposium on High Performance Computer Architecture (HPCA'04)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HPCA.2004.10019\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"10th International Symposium on High Performance Computer Architecture (HPCA'04)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HPCA.2004.10019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Synthesizing Representative I/O Workloads for TPC-H
Synthesizing I/O requests that can accurately capture workload behavior is extremely valuable for the design, implementation and optimization of disk subsystems. This paper presents a synthetic workload generator for TPC-H, an important decision-support commercial workload, by completely characterizing the arrival and access patterns of its queries. We present a novel approach for parameterizing the behavior of inter-mingling streams of sequential requests, and exploit correlations between multiple attributes of these requests, to generate disk block-level traces that are shown to accurately mimic the behavior of a real trace in terms of response time characteristics for each TPC-H query.