利用永久激光扫描评估潮间带时间尺度上沙滩宽度的变化

M. Kuschnerus, R. Lindenbergh, S. de Vries
{"title":"利用永久激光扫描评估潮间带时间尺度上沙滩宽度的变化","authors":"M. Kuschnerus, R. Lindenbergh, S. de Vries","doi":"10.4995/jisdm2022.2022.13729","DOIUrl":null,"url":null,"abstract":"Coastal zones are highly dynamic, and their topography is subject to constant deformation. These deformations are governed by sediment transports that are forced by environmental conditions of waves, tides and wind which result in topographic changes at various spatial and temporal scales. In the view of climate change and intensification of extreme weather events, it is important for coastal management to monitor the deformation and coastal topography with high accuracy. To demonstrate a novel way of deriving these deformations and of analyzing the underlying processes, we use permanent laser scanning (PLS) to monitor part of the typical urban coastal beach in Noordwijk, The Netherlands. A laser scanner permanently installed on a hotel building acquired one 3D point cloud of the sandy beach and dunes every hour, continuously, for a duration of two years. The resulting spatio-temporal data set consists of ~ 15 000 point clouds and contains the evolution of a section of the coast of ~ 1 km length at great detail. The elevation changes are observed at centimeter level, allowing to monitor even small scale and slow processes. However, this information is not readily available from the extensive data set. By deriving digital elevation models (DEMs) from each point cloud and collecting elevation data as time series per spatial grid cell, we structure the data in an efficient way. We use the DEMs to estimate two parameters describing the coastal deformation, beach width and intertidal width. We also extract the shoreline at low and high tide for a part of the data set and estimate beach width and intertidal width from them. We find that heavy storms influence the location of the shoreline and the intertidal width in particular. Ultimately, the estimated beach width and intertidal width at high temporal frequency (monthly) and with high spatial accuracy (meters) helps coastal management to improve the understanding of coastal deformation processes.","PeriodicalId":404487,"journal":{"name":"Proceedings of the 5th Joint International Symposium on Deformation Monitoring - JISDM 2022","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Assessing sandy beach width variations on intertidal time scales using permanent laser scanning\",\"authors\":\"M. Kuschnerus, R. Lindenbergh, S. de Vries\",\"doi\":\"10.4995/jisdm2022.2022.13729\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Coastal zones are highly dynamic, and their topography is subject to constant deformation. These deformations are governed by sediment transports that are forced by environmental conditions of waves, tides and wind which result in topographic changes at various spatial and temporal scales. In the view of climate change and intensification of extreme weather events, it is important for coastal management to monitor the deformation and coastal topography with high accuracy. To demonstrate a novel way of deriving these deformations and of analyzing the underlying processes, we use permanent laser scanning (PLS) to monitor part of the typical urban coastal beach in Noordwijk, The Netherlands. A laser scanner permanently installed on a hotel building acquired one 3D point cloud of the sandy beach and dunes every hour, continuously, for a duration of two years. The resulting spatio-temporal data set consists of ~ 15 000 point clouds and contains the evolution of a section of the coast of ~ 1 km length at great detail. The elevation changes are observed at centimeter level, allowing to monitor even small scale and slow processes. However, this information is not readily available from the extensive data set. By deriving digital elevation models (DEMs) from each point cloud and collecting elevation data as time series per spatial grid cell, we structure the data in an efficient way. We use the DEMs to estimate two parameters describing the coastal deformation, beach width and intertidal width. We also extract the shoreline at low and high tide for a part of the data set and estimate beach width and intertidal width from them. We find that heavy storms influence the location of the shoreline and the intertidal width in particular. Ultimately, the estimated beach width and intertidal width at high temporal frequency (monthly) and with high spatial accuracy (meters) helps coastal management to improve the understanding of coastal deformation processes.\",\"PeriodicalId\":404487,\"journal\":{\"name\":\"Proceedings of the 5th Joint International Symposium on Deformation Monitoring - JISDM 2022\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 5th Joint International Symposium on Deformation Monitoring - JISDM 2022\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4995/jisdm2022.2022.13729\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 5th Joint International Symposium on Deformation Monitoring - JISDM 2022","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4995/jisdm2022.2022.13729","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

海岸带是高度动态的,它们的地形受到不断变形的影响。这些变形是由波浪、潮汐和风等环境条件所迫使的泥沙搬运所控制的,这些环境条件导致了不同时空尺度上的地形变化。鉴于气候变化和极端天气事件的加剧,对海岸形变和海岸地形进行高精度监测对海岸管理具有重要意义。为了展示一种新的方法来获得这些变形并分析潜在的过程,我们使用永久激光扫描(PLS)来监测荷兰诺德韦克的典型城市沿海海滩的一部分。永久安装在酒店建筑物上的激光扫描仪每小时连续获取一个沙滩和沙丘的三维点云,持续两年。所得到的时空数据集由约15000个点云组成,包含了约1公里长的一段海岸的详细演变。高度变化在厘米水平上观察,允许监测甚至小尺度和缓慢的过程。然而,这些信息并不容易从广泛的数据集中获得。通过从每个点云中导出数字高程模型(dem),并将高程数据作为每个空间网格单元的时间序列收集,我们有效地构建了数据。我们使用dem估计描述海岸变形的两个参数,海滩宽度和潮间带宽度。我们还提取了一部分数据集的低潮和涨潮时的海岸线,并从中估计了海滩宽度和潮间带宽度。我们发现,强风暴影响海岸线的位置,特别是潮间带宽度。最终,高时间频率(月)和高空间精度(米)的滩宽和潮间带宽度估算有助于海岸管理人员提高对海岸变形过程的认识。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Assessing sandy beach width variations on intertidal time scales using permanent laser scanning
Coastal zones are highly dynamic, and their topography is subject to constant deformation. These deformations are governed by sediment transports that are forced by environmental conditions of waves, tides and wind which result in topographic changes at various spatial and temporal scales. In the view of climate change and intensification of extreme weather events, it is important for coastal management to monitor the deformation and coastal topography with high accuracy. To demonstrate a novel way of deriving these deformations and of analyzing the underlying processes, we use permanent laser scanning (PLS) to monitor part of the typical urban coastal beach in Noordwijk, The Netherlands. A laser scanner permanently installed on a hotel building acquired one 3D point cloud of the sandy beach and dunes every hour, continuously, for a duration of two years. The resulting spatio-temporal data set consists of ~ 15 000 point clouds and contains the evolution of a section of the coast of ~ 1 km length at great detail. The elevation changes are observed at centimeter level, allowing to monitor even small scale and slow processes. However, this information is not readily available from the extensive data set. By deriving digital elevation models (DEMs) from each point cloud and collecting elevation data as time series per spatial grid cell, we structure the data in an efficient way. We use the DEMs to estimate two parameters describing the coastal deformation, beach width and intertidal width. We also extract the shoreline at low and high tide for a part of the data set and estimate beach width and intertidal width from them. We find that heavy storms influence the location of the shoreline and the intertidal width in particular. Ultimately, the estimated beach width and intertidal width at high temporal frequency (monthly) and with high spatial accuracy (meters) helps coastal management to improve the understanding of coastal deformation processes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Landslide monitoring using geotechnical, UAV, GNSS and MTInSAR instrumentation Evaluation of synthetic aperture radar interferometric techniques for monitoring of fast deformation caused by underground mining exploitation Long and close-range terrestrial photogrammetry for rocky landscape deformation monitoring PS-InSAR and UAV technology used in the stability study of Ankang expansive soil airport Deformation analysis in landslides NE Bulgaria using GNSS data complemented by InSAR for better interpretation results
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1