支持智能制造系统中水平和垂直信息集成的本体论方法:一个长寿命包装厂的实验案例

Ramon Martinez Pereira, A. L. Szejka, Osiris Canciglieri Jr.
{"title":"支持智能制造系统中水平和垂直信息集成的本体论方法:一个长寿命包装厂的实验案例","authors":"Ramon Martinez Pereira, A. L. Szejka, Osiris Canciglieri Jr.","doi":"10.3389/fmtec.2022.854155","DOIUrl":null,"url":null,"abstract":"Digital manufacturing has been challenged by the manufacturing industry to rationalize different ways to connect and exchange information and knowledge across different phases of manufacturing systems. One of the Industry 4.0 pillars is the horizontal and vertical integration with intelligent and self-adaptive systems. For this to be possible, the manufacturing industry applies an extensive range of software tools, such as GRAI, CIMOSA, MO2GO, ARIS, SCADA, MES, ERP, CAD, and CAM. Individually, each one performs its function to support the manufacturing process. However, when these multiple tools operate together using technical standards, some misinterpretation and mistake gaps are identified due to a lack of machine-to-machine (M2M) communication and users’ interpretation. This is recognized as a semantic interoperability problem. Semantic technologies, such as ontologies, have been proven to be a promising way to overcome semantic interoperability obstacles. Based on this context, this study is proposing a conceptual framework based on semantic technologies to create a solution to the horizontal and vertical integration and semantic interoperability obstacle. MANUMATE is the framework proposed, and it consists of three artifacts, 1) reference ontologies, 2) requirements, and 3) application ontology, and two processes, 1) ontology specialization and 2) information application. The MANUMATE framework is applied to two experimental case studies to validate the conceptual solution in two different applications, in the context of a long-life package for the beverages industry. These case studies help elucidate how the application of the framework could improve the information and knowledge exchange by providing a standard way to represent information among different stakeholders in the productive process. A discussion about the results is presented, revealing the benefits and limitations of the solution.","PeriodicalId":330401,"journal":{"name":"Frontiers in Manufacturing Technology","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Ontological Approach to Support the Horizontal and Vertical Information Integration in Smart Manufacturing Systems: An Experimental Case in a Long-Life Packaging Factory\",\"authors\":\"Ramon Martinez Pereira, A. L. Szejka, Osiris Canciglieri Jr.\",\"doi\":\"10.3389/fmtec.2022.854155\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Digital manufacturing has been challenged by the manufacturing industry to rationalize different ways to connect and exchange information and knowledge across different phases of manufacturing systems. One of the Industry 4.0 pillars is the horizontal and vertical integration with intelligent and self-adaptive systems. For this to be possible, the manufacturing industry applies an extensive range of software tools, such as GRAI, CIMOSA, MO2GO, ARIS, SCADA, MES, ERP, CAD, and CAM. Individually, each one performs its function to support the manufacturing process. However, when these multiple tools operate together using technical standards, some misinterpretation and mistake gaps are identified due to a lack of machine-to-machine (M2M) communication and users’ interpretation. This is recognized as a semantic interoperability problem. Semantic technologies, such as ontologies, have been proven to be a promising way to overcome semantic interoperability obstacles. Based on this context, this study is proposing a conceptual framework based on semantic technologies to create a solution to the horizontal and vertical integration and semantic interoperability obstacle. MANUMATE is the framework proposed, and it consists of three artifacts, 1) reference ontologies, 2) requirements, and 3) application ontology, and two processes, 1) ontology specialization and 2) information application. The MANUMATE framework is applied to two experimental case studies to validate the conceptual solution in two different applications, in the context of a long-life package for the beverages industry. These case studies help elucidate how the application of the framework could improve the information and knowledge exchange by providing a standard way to represent information among different stakeholders in the productive process. A discussion about the results is presented, revealing the benefits and limitations of the solution.\",\"PeriodicalId\":330401,\"journal\":{\"name\":\"Frontiers in Manufacturing Technology\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Manufacturing Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/fmtec.2022.854155\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Manufacturing Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fmtec.2022.854155","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

制造业对数字化制造提出了挑战,要求在制造系统的不同阶段以不同的方式连接和交换信息和知识。工业4.0的支柱之一是与智能和自适应系统的横向和纵向整合。为了实现这一目标,制造业应用了广泛的软件工具,如GRAI, CIMOSA, MO2GO, ARIS, SCADA, MES, ERP, CAD和CAM。单独地,每一个都执行其功能来支持制造过程。然而,当这些多种工具使用技术标准一起操作时,由于缺乏机器对机器(M2M)通信和用户的解释,会发现一些误解和错误。这被认为是一个语义互操作性问题。语义技术(如本体)已被证明是克服语义互操作性障碍的一种很有前途的方法。在此背景下,本研究提出了一个基于语义技术的概念框架,以解决横向和纵向集成以及语义互操作性障碍。MANUMATE框架由参考本体、需求本体和应用本体三个构件和本体专门化和信息应用两个过程组成。MANUMATE框架应用于两个实验案例研究,在饮料行业的长寿命包装的背景下,在两个不同的应用中验证概念解决方案。这些案例研究有助于阐明该框架的应用如何通过提供在生产过程中不同利益相关者之间表示信息的标准方法来改善信息和知识交换。对结果进行了讨论,揭示了该解决方案的优点和局限性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Ontological Approach to Support the Horizontal and Vertical Information Integration in Smart Manufacturing Systems: An Experimental Case in a Long-Life Packaging Factory
Digital manufacturing has been challenged by the manufacturing industry to rationalize different ways to connect and exchange information and knowledge across different phases of manufacturing systems. One of the Industry 4.0 pillars is the horizontal and vertical integration with intelligent and self-adaptive systems. For this to be possible, the manufacturing industry applies an extensive range of software tools, such as GRAI, CIMOSA, MO2GO, ARIS, SCADA, MES, ERP, CAD, and CAM. Individually, each one performs its function to support the manufacturing process. However, when these multiple tools operate together using technical standards, some misinterpretation and mistake gaps are identified due to a lack of machine-to-machine (M2M) communication and users’ interpretation. This is recognized as a semantic interoperability problem. Semantic technologies, such as ontologies, have been proven to be a promising way to overcome semantic interoperability obstacles. Based on this context, this study is proposing a conceptual framework based on semantic technologies to create a solution to the horizontal and vertical integration and semantic interoperability obstacle. MANUMATE is the framework proposed, and it consists of three artifacts, 1) reference ontologies, 2) requirements, and 3) application ontology, and two processes, 1) ontology specialization and 2) information application. The MANUMATE framework is applied to two experimental case studies to validate the conceptual solution in two different applications, in the context of a long-life package for the beverages industry. These case studies help elucidate how the application of the framework could improve the information and knowledge exchange by providing a standard way to represent information among different stakeholders in the productive process. A discussion about the results is presented, revealing the benefits and limitations of the solution.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Enhancing manufacturing operations with synthetic data: a systematic framework for data generation, accuracy, and utility Enhancing manufacturing operations with synthetic data: a systematic framework for data generation, accuracy, and utility Imaging systems and techniques for fusion-based metal additive manufacturing: a review Leveraging I4.0 smart methodologies for developing solutions for harvesting produce Editorial: Horizons in manufacturing technology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1