基于AAM和DBN相结合的面部情绪识别方法的发展

K. Ko, K. Sim
{"title":"基于AAM和DBN相结合的面部情绪识别方法的发展","authors":"K. Ko, K. Sim","doi":"10.1109/CW.2010.65","DOIUrl":null,"url":null,"abstract":"In this paper, novel methods for facial emotion recognition in facial image sequences are presented. Our facial emotional feature detection and extracting based on Active Appearance Models (AAM) with Ekman’s Facial Action Coding System (FACS). Our approach to facial emotion recognition lies in the dynamic and probabilistic framework based on Dynamic Bayesian Network (DBN) with Kalman Filter for modeling and understanding the temporal phases of facial expressions in image sequences. By combining AAM and DBN, the proposed method can achieve a higher recognition performance level compare with other facial expression recognition methods. The result on the BioID dataset show a recognition accuracy of more than 90% for facial emotion reasoning using the proposed method.","PeriodicalId":410870,"journal":{"name":"2010 International Conference on Cyberworlds","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"44","resultStr":"{\"title\":\"Development of a Facial Emotion Recognition Method Based on Combining AAM with DBN\",\"authors\":\"K. Ko, K. Sim\",\"doi\":\"10.1109/CW.2010.65\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, novel methods for facial emotion recognition in facial image sequences are presented. Our facial emotional feature detection and extracting based on Active Appearance Models (AAM) with Ekman’s Facial Action Coding System (FACS). Our approach to facial emotion recognition lies in the dynamic and probabilistic framework based on Dynamic Bayesian Network (DBN) with Kalman Filter for modeling and understanding the temporal phases of facial expressions in image sequences. By combining AAM and DBN, the proposed method can achieve a higher recognition performance level compare with other facial expression recognition methods. The result on the BioID dataset show a recognition accuracy of more than 90% for facial emotion reasoning using the proposed method.\",\"PeriodicalId\":410870,\"journal\":{\"name\":\"2010 International Conference on Cyberworlds\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"44\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 International Conference on Cyberworlds\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CW.2010.65\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Conference on Cyberworlds","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CW.2010.65","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 44

摘要

本文提出了一种基于人脸图像序列的人脸情绪识别新方法。基于Ekman面部动作编码系统(FACS)的主动外观模型(AAM)的面部情绪特征检测与提取。我们的面部情绪识别方法是基于动态贝叶斯网络(DBN)和卡尔曼滤波的动态和概率框架,用于建模和理解图像序列中面部表情的时间相位。通过将AAM和DBN相结合,与其他面部表情识别方法相比,该方法可以达到更高的识别性能水平。在BioID数据集上的结果表明,使用该方法进行面部情绪推理的识别准确率超过90%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Development of a Facial Emotion Recognition Method Based on Combining AAM with DBN
In this paper, novel methods for facial emotion recognition in facial image sequences are presented. Our facial emotional feature detection and extracting based on Active Appearance Models (AAM) with Ekman’s Facial Action Coding System (FACS). Our approach to facial emotion recognition lies in the dynamic and probabilistic framework based on Dynamic Bayesian Network (DBN) with Kalman Filter for modeling and understanding the temporal phases of facial expressions in image sequences. By combining AAM and DBN, the proposed method can achieve a higher recognition performance level compare with other facial expression recognition methods. The result on the BioID dataset show a recognition accuracy of more than 90% for facial emotion reasoning using the proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Affordable Augmented Reality Based Rehabilitation System for Hand Motions Geodesic Model of Human Body Cinematics and Narratives: An Exploitation of Real-Time Animation User Model for Predictive Calibration Control on Interactive Screens Computer Generated Caricature: A Survey
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1