使用全带宽和恒定存储的超立方体上的矩阵乘法

Ching-Tien Ho, Lennart Johnsson, Alan Edelman
{"title":"使用全带宽和恒定存储的超立方体上的矩阵乘法","authors":"Ching-Tien Ho, Lennart Johnsson, Alan Edelman","doi":"10.1109/DMCC.1991.633211","DOIUrl":null,"url":null,"abstract":"For matrix multiplicatioln on hypercube multiprocessors with the product matrix accumulated in place a processor must receive albout P2/n elements of each input operand, with opeicands of size P x P distributed evenly over N processors. With concurrent communication on all ports, the number of element transfers in sequence can be reduced to P2/fllog1\\J for each input operand. We present a two-level partitioning of the matrices and an algolrithm for the matrix: multiplication with optimal data. motion and constant storage. The algorithm has sequential arithmetic complexity 2P3, and parallel arithmetic complexity 2P3/N. The algorithm has been implemented oin the Connection Machine model CM-2. For the performance on the 8K CM-2, we measured iibout 1.6 Gflops, which would scale up to about 13 Gflops for a 64K full machine.","PeriodicalId":313314,"journal":{"name":"The Sixth Distributed Memory Computing Conference, 1991. Proceedings","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1991-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":"{\"title\":\"Matrix Multiplication on Hypercubes Using Full Bandwith and Constant Storage\",\"authors\":\"Ching-Tien Ho, Lennart Johnsson, Alan Edelman\",\"doi\":\"10.1109/DMCC.1991.633211\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For matrix multiplicatioln on hypercube multiprocessors with the product matrix accumulated in place a processor must receive albout P2/n elements of each input operand, with opeicands of size P x P distributed evenly over N processors. With concurrent communication on all ports, the number of element transfers in sequence can be reduced to P2/fllog1\\\\J for each input operand. We present a two-level partitioning of the matrices and an algolrithm for the matrix: multiplication with optimal data. motion and constant storage. The algorithm has sequential arithmetic complexity 2P3, and parallel arithmetic complexity 2P3/N. The algorithm has been implemented oin the Connection Machine model CM-2. For the performance on the 8K CM-2, we measured iibout 1.6 Gflops, which would scale up to about 13 Gflops for a 64K full machine.\",\"PeriodicalId\":313314,\"journal\":{\"name\":\"The Sixth Distributed Memory Computing Conference, 1991. Proceedings\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1991-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"29\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Sixth Distributed Memory Computing Conference, 1991. Proceedings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DMCC.1991.633211\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Sixth Distributed Memory Computing Conference, 1991. Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DMCC.1991.633211","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 29

摘要

对于在积矩阵累积的超立方多处理器上进行矩阵乘法,处理器必须接收每个输入操作数的大约P2/n个元素,操作数的大小为P × P,均匀分布在n个处理器上。在所有端口上进行并发通信时,每个输入操作数的元素传输顺序可以减少到P2/fllog1\J。我们提出了矩阵的两级划分和矩阵的一种算法:最优数据乘法。运动和恒定存储。该算法的顺序算法复杂度为2P3,并行算法复杂度为2P3/N。该算法已在CM-2型连接机中实现。对于8K CM-2的性能,我们测量了大约1.6 Gflops,对于64K的完整机器,这将扩展到大约13 Gflops。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Matrix Multiplication on Hypercubes Using Full Bandwith and Constant Storage
For matrix multiplicatioln on hypercube multiprocessors with the product matrix accumulated in place a processor must receive albout P2/n elements of each input operand, with opeicands of size P x P distributed evenly over N processors. With concurrent communication on all ports, the number of element transfers in sequence can be reduced to P2/fllog1\J for each input operand. We present a two-level partitioning of the matrices and an algolrithm for the matrix: multiplication with optimal data. motion and constant storage. The algorithm has sequential arithmetic complexity 2P3, and parallel arithmetic complexity 2P3/N. The algorithm has been implemented oin the Connection Machine model CM-2. For the performance on the 8K CM-2, we measured iibout 1.6 Gflops, which would scale up to about 13 Gflops for a 64K full machine.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Scalable Performance Environments for Parallel Systems Using Spanning-Trees for Balancing Dynamic Load on Multiprocessors Optimal Total Exchange on an SIMD Distributed-Memory Hypercube Structured Parallel Programming on Multicomputers Parallel Solutions to the Phase Problem in X-Ray Crystallography: An Update
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1