基于对象的图像分类:现状和计算挑战

Ranga Raju Vatsavai
{"title":"基于对象的图像分类:现状和计算挑战","authors":"Ranga Raju Vatsavai","doi":"10.1145/2534921.2534927","DOIUrl":null,"url":null,"abstract":"As the spatial resolution of satellite remote sensing imagery is advancing towards sub meter, the predominantly pixel based (or single instance) classification methods needs be redesigned to take advantage of the spatial and structural patterns found in the very high resolution imagery. In this work, we look at the advantages of object based image analysis methods through the newer multiple instance learning learning schemes. We analyze these methods in the context of big geospatial data and allude readers to some of the outstanding computational challenges.","PeriodicalId":416086,"journal":{"name":"International Workshop on Analytics for Big Geospatial Data","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Object based image classification: state of the art and computational challenges\",\"authors\":\"Ranga Raju Vatsavai\",\"doi\":\"10.1145/2534921.2534927\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As the spatial resolution of satellite remote sensing imagery is advancing towards sub meter, the predominantly pixel based (or single instance) classification methods needs be redesigned to take advantage of the spatial and structural patterns found in the very high resolution imagery. In this work, we look at the advantages of object based image analysis methods through the newer multiple instance learning learning schemes. We analyze these methods in the context of big geospatial data and allude readers to some of the outstanding computational challenges.\",\"PeriodicalId\":416086,\"journal\":{\"name\":\"International Workshop on Analytics for Big Geospatial Data\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Workshop on Analytics for Big Geospatial Data\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2534921.2534927\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Workshop on Analytics for Big Geospatial Data","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2534921.2534927","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

随着卫星遥感影像空间分辨率向亚米方向发展,需要重新设计主要基于像元(或单实例)的分类方法,以利用极高分辨率影像中的空间和结构模式。在这项工作中,我们通过新的多实例学习学习方案来研究基于对象的图像分析方法的优点。我们在大地理空间数据的背景下分析这些方法,并暗示读者一些突出的计算挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Object based image classification: state of the art and computational challenges
As the spatial resolution of satellite remote sensing imagery is advancing towards sub meter, the predominantly pixel based (or single instance) classification methods needs be redesigned to take advantage of the spatial and structural patterns found in the very high resolution imagery. In this work, we look at the advantages of object based image analysis methods through the newer multiple instance learning learning schemes. We analyze these methods in the context of big geospatial data and allude readers to some of the outstanding computational challenges.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Building knowledge graph from public data for predictive analysis: a case study on predicting technology future in space and time Big data as a service from an urban information system Spatial computing goes to education and beyond: can semantic trajectory characterize students? Agent based urban growth modeling framework on Apache Spark Towards massive spatial data validation with SpatialHadoop
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1