肌萎缩侧索硬化症患者上肢加速度计信号的统计特性

L. J. de Holanda, Ana R R Lindquist, A. P. M. Fernandes, Débora C.S. Oliveira, D. Nagem, R. de M. Valentim, E. Morya, S. Krishnan
{"title":"肌萎缩侧索硬化症患者上肢加速度计信号的统计特性","authors":"L. J. de Holanda, Ana R R Lindquist, A. P. M. Fernandes, Débora C.S. Oliveira, D. Nagem, R. de M. Valentim, E. Morya, S. Krishnan","doi":"10.1109/ROMA55875.2022.9915673","DOIUrl":null,"url":null,"abstract":"Statistical properties of accelerometer (ACC) are useful to determine the appropriate tool to obtain biomedical signal features for each specific aim. It may be applied to evaluate human movement in order to detect and monitor neuromuscular diseases such as amyotrophic lateral sclerosis (ALS). This study aimed to use techniques to determine the degree of stationarity and linearity of ACC to analyze and compare upper limb (UL) in healthy subjects (HS) and ALS. Our dataset contains 10 being HS (age $48.4\\pm 4.25$ years) and seven ALS people (age $59.86\\pm 16.32$ years) who underwent motion analysis from 16 ACC sensors sampled at 148 Hz for 25 seconds, which were positioned over the UL. In the pre-processing stage, we removed the first five seconds, a low pass filter, data normalization, and Euclidean norm of the 3-axis ACC data. Subsequently, we measured the degree of stationarity (mean, variance, and Kwiatkowski-Phillips-Schmidt-Shin test) and linearity (standard deviation, Brock, Dechert & Scheinkman test, and nonlinear autoregressive exogenous test). Proved by experimental results, ACC data of UL segments evaluated showed nonlinear and nonstationary behavior, mainly in the ALS patients. Our findings provide the first applications of statistical methods to guide ACC analysis from the view of nonlinear and nonstationary properties of ACC signals to extract signal features to guide the therapeutic planning of patients and a better control strategy for assistive technologies.","PeriodicalId":121458,"journal":{"name":"2022 IEEE 5th International Symposium in Robotics and Manufacturing Automation (ROMA)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Statistical Properties of Upper Limb Accelerometer Signals of Patients with Amyotrophic Lateral Sclerosis\",\"authors\":\"L. J. de Holanda, Ana R R Lindquist, A. P. M. Fernandes, Débora C.S. Oliveira, D. Nagem, R. de M. Valentim, E. Morya, S. Krishnan\",\"doi\":\"10.1109/ROMA55875.2022.9915673\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Statistical properties of accelerometer (ACC) are useful to determine the appropriate tool to obtain biomedical signal features for each specific aim. It may be applied to evaluate human movement in order to detect and monitor neuromuscular diseases such as amyotrophic lateral sclerosis (ALS). This study aimed to use techniques to determine the degree of stationarity and linearity of ACC to analyze and compare upper limb (UL) in healthy subjects (HS) and ALS. Our dataset contains 10 being HS (age $48.4\\\\pm 4.25$ years) and seven ALS people (age $59.86\\\\pm 16.32$ years) who underwent motion analysis from 16 ACC sensors sampled at 148 Hz for 25 seconds, which were positioned over the UL. In the pre-processing stage, we removed the first five seconds, a low pass filter, data normalization, and Euclidean norm of the 3-axis ACC data. Subsequently, we measured the degree of stationarity (mean, variance, and Kwiatkowski-Phillips-Schmidt-Shin test) and linearity (standard deviation, Brock, Dechert & Scheinkman test, and nonlinear autoregressive exogenous test). Proved by experimental results, ACC data of UL segments evaluated showed nonlinear and nonstationary behavior, mainly in the ALS patients. Our findings provide the first applications of statistical methods to guide ACC analysis from the view of nonlinear and nonstationary properties of ACC signals to extract signal features to guide the therapeutic planning of patients and a better control strategy for assistive technologies.\",\"PeriodicalId\":121458,\"journal\":{\"name\":\"2022 IEEE 5th International Symposium in Robotics and Manufacturing Automation (ROMA)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 5th International Symposium in Robotics and Manufacturing Automation (ROMA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ROMA55875.2022.9915673\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 5th International Symposium in Robotics and Manufacturing Automation (ROMA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROMA55875.2022.9915673","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

加速度计(ACC)的统计特性有助于确定合适的工具来获得每个特定目标的生物医学信号特征。它可以用于评估人体运动,以检测和监测神经肌肉疾病,如肌萎缩侧索硬化症(ALS)。本研究旨在利用技术确定ACC的平稳性和线性程度,分析和比较健康受试者(HS)和ALS的上肢(UL)。我们的数据集包含10名HS患者(年龄48.4\pm 4.25美元)和7名ALS患者(年龄59.86\pm 16.32美元),他们接受了来自16个ACC传感器的运动分析,这些传感器以148 Hz采样,持续25秒,位于UL上方。在预处理阶段,我们删除了前5秒、低通滤波器、数据归一化和3轴ACC数据的欧几里得范数。随后,我们测量了平稳性(均值、方差和Kwiatkowski-Phillips-Schmidt-Shin检验)和线性度(标准差、Brock、Dechert & Scheinkman检验和非线性自回归外生检验)。实验结果证明,评估的UL节段ACC数据表现出非线性和非平稳行为,主要发生在ALS患者中。我们的研究结果首次应用统计方法,从ACC信号的非线性和非平稳特性出发,指导ACC分析,提取信号特征,指导患者的治疗计划,并为辅助技术提供更好的控制策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Statistical Properties of Upper Limb Accelerometer Signals of Patients with Amyotrophic Lateral Sclerosis
Statistical properties of accelerometer (ACC) are useful to determine the appropriate tool to obtain biomedical signal features for each specific aim. It may be applied to evaluate human movement in order to detect and monitor neuromuscular diseases such as amyotrophic lateral sclerosis (ALS). This study aimed to use techniques to determine the degree of stationarity and linearity of ACC to analyze and compare upper limb (UL) in healthy subjects (HS) and ALS. Our dataset contains 10 being HS (age $48.4\pm 4.25$ years) and seven ALS people (age $59.86\pm 16.32$ years) who underwent motion analysis from 16 ACC sensors sampled at 148 Hz for 25 seconds, which were positioned over the UL. In the pre-processing stage, we removed the first five seconds, a low pass filter, data normalization, and Euclidean norm of the 3-axis ACC data. Subsequently, we measured the degree of stationarity (mean, variance, and Kwiatkowski-Phillips-Schmidt-Shin test) and linearity (standard deviation, Brock, Dechert & Scheinkman test, and nonlinear autoregressive exogenous test). Proved by experimental results, ACC data of UL segments evaluated showed nonlinear and nonstationary behavior, mainly in the ALS patients. Our findings provide the first applications of statistical methods to guide ACC analysis from the view of nonlinear and nonstationary properties of ACC signals to extract signal features to guide the therapeutic planning of patients and a better control strategy for assistive technologies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Cybersecurity Infrastructure adoption Model for Malware Mitigation in Small Medium Enterprises (SME) Interference Mitigation Techniques For The Operation Of Unmanned Aerial Vehicle (Uav) Depth Map Information from Stereo Image Pairs using Deep Learning and Bilateral Filter for Machine Vision Application Vehicle Anti-theft Face Recognition System, Speed Control and Obstacle Detection using Raspberry Pi Remote Patient Monitoring System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1