单壳椭球结构的脑电/脑磁图阵列响应核

D. Gutiérrez, A. Nehorai
{"title":"单壳椭球结构的脑电/脑磁图阵列响应核","authors":"D. Gutiérrez, A. Nehorai","doi":"10.1109/CAMAP.2005.1574225","DOIUrl":null,"url":null,"abstract":"We present analytical forward modeling solutions in the form of array response kernels for electroencephalography (EEG) and magnetoencephalography (MEG) assuming a single-shell ellipsoidal geometry that approximates the anatomy of the head and a dipole current models the source. The structure of our solution facilitates the analysis of the inverse problem by factoring the lead field into a product of the current dipole source and a kernel containing the information corresponding to the head geometry and location of the source and sensors. This factorization allows the inverse problem to be approached as an explicit function of just the location parameters, which reduces the complexity of the estimation solution search. Furthermore, the use of an ellipsoidal geometry is useful for cases when incorporating the anisotropy of the head is important but a better model cannot be defined","PeriodicalId":281761,"journal":{"name":"1st IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, 2005.","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Array response kernels for EEG/MEG in single-shell ellipsoidal geometry\",\"authors\":\"D. Gutiérrez, A. Nehorai\",\"doi\":\"10.1109/CAMAP.2005.1574225\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present analytical forward modeling solutions in the form of array response kernels for electroencephalography (EEG) and magnetoencephalography (MEG) assuming a single-shell ellipsoidal geometry that approximates the anatomy of the head and a dipole current models the source. The structure of our solution facilitates the analysis of the inverse problem by factoring the lead field into a product of the current dipole source and a kernel containing the information corresponding to the head geometry and location of the source and sensors. This factorization allows the inverse problem to be approached as an explicit function of just the location parameters, which reduces the complexity of the estimation solution search. Furthermore, the use of an ellipsoidal geometry is useful for cases when incorporating the anisotropy of the head is important but a better model cannot be defined\",\"PeriodicalId\":281761,\"journal\":{\"name\":\"1st IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, 2005.\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"1st IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, 2005.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CAMAP.2005.1574225\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"1st IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CAMAP.2005.1574225","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

我们提出了脑电图(EEG)和脑磁图(MEG)的阵列响应核形式的解析正演建模解决方案,假设一个近似头部解剖结构的单壳椭球几何形状和偶极电流模型的源。我们的解决方案的结构通过将引线场分解为电流偶极子源和包含与源和传感器的头部几何形状和位置相对应的信息的核的乘积来促进反问题的分析。这种分解允许将逆问题作为位置参数的显式函数来处理,从而降低了估计解搜索的复杂性。此外,在考虑头部各向异性很重要但无法定义更好的模型的情况下,椭球体几何形状的使用是有用的
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Array response kernels for EEG/MEG in single-shell ellipsoidal geometry
We present analytical forward modeling solutions in the form of array response kernels for electroencephalography (EEG) and magnetoencephalography (MEG) assuming a single-shell ellipsoidal geometry that approximates the anatomy of the head and a dipole current models the source. The structure of our solution facilitates the analysis of the inverse problem by factoring the lead field into a product of the current dipole source and a kernel containing the information corresponding to the head geometry and location of the source and sensors. This factorization allows the inverse problem to be approached as an explicit function of just the location parameters, which reduces the complexity of the estimation solution search. Furthermore, the use of an ellipsoidal geometry is useful for cases when incorporating the anisotropy of the head is important but a better model cannot be defined
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Soft decode and forward improves cooperative communications Blind identification of under-determined mixtures based on the characteristic function: influence of the knowledge of source PDF's Recognition of the predetermined random signals involving the unknown signals Combined direction finders of point noise radiation sources in AA based on adaptive lattice filters Neural network computational technique for high-resolution remote sensing image reconstruction with system fusion
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1