基于参数特征和人工神经网络的肺声信号呼吸病理分类

R. Palaniappan, K. Sundaraj, Sebastian Sundaraj, N. Huliraj, S. S. Revadi, B. Archana
{"title":"基于参数特征和人工神经网络的肺声信号呼吸病理分类","authors":"R. Palaniappan, K. Sundaraj, Sebastian Sundaraj, N. Huliraj, S. S. Revadi, B. Archana","doi":"10.1109/ICCIC.2014.7238315","DOIUrl":null,"url":null,"abstract":"Pulmonary acoustic signal analysis provides essential information on the present state of the Lungs. In this paper, we intend to distinguish between normal, airway obstruction pathology and interstitial lung disease using pulmonary acoustic signal recordings. The proposed method extracts Mel frequency cepstral coefficients (MFCC) and AR Coefficients as features from pulmonary acoustic signals. The extracted features are then classified using Artificial Neural Network (ANN) classifier. The classifier performance is analysed by using confusion matrix technique. A mean classification accuracy of 92.59% and 91.69% was reported for the MFCC features and AR coefficients features respectively. The performance analysis of the ANN classifier using confusion matrix revealed that normal, airway obstruction and interstitial lung disease are classified at 92.75%, 91.30% and 92.75% classification accuracy respectively for the MFCC features. Similarly, normal, airway obstruction and interstitial lung disease are classified at 92.75%, 91.30% and 89.85% classification accuracy respectively for the AR coefficient features. The analysis reveals that the proposed method shows promising outcome in distinguishing between the normal, airway obstruction and interstitial lung disease.","PeriodicalId":187874,"journal":{"name":"2014 IEEE International Conference on Computational Intelligence and Computing Research","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Classification of respiratory pathology in pulmonary acoustic signals using parametric features and artificial neural network\",\"authors\":\"R. Palaniappan, K. Sundaraj, Sebastian Sundaraj, N. Huliraj, S. S. Revadi, B. Archana\",\"doi\":\"10.1109/ICCIC.2014.7238315\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Pulmonary acoustic signal analysis provides essential information on the present state of the Lungs. In this paper, we intend to distinguish between normal, airway obstruction pathology and interstitial lung disease using pulmonary acoustic signal recordings. The proposed method extracts Mel frequency cepstral coefficients (MFCC) and AR Coefficients as features from pulmonary acoustic signals. The extracted features are then classified using Artificial Neural Network (ANN) classifier. The classifier performance is analysed by using confusion matrix technique. A mean classification accuracy of 92.59% and 91.69% was reported for the MFCC features and AR coefficients features respectively. The performance analysis of the ANN classifier using confusion matrix revealed that normal, airway obstruction and interstitial lung disease are classified at 92.75%, 91.30% and 92.75% classification accuracy respectively for the MFCC features. Similarly, normal, airway obstruction and interstitial lung disease are classified at 92.75%, 91.30% and 89.85% classification accuracy respectively for the AR coefficient features. The analysis reveals that the proposed method shows promising outcome in distinguishing between the normal, airway obstruction and interstitial lung disease.\",\"PeriodicalId\":187874,\"journal\":{\"name\":\"2014 IEEE International Conference on Computational Intelligence and Computing Research\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE International Conference on Computational Intelligence and Computing Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCIC.2014.7238315\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Conference on Computational Intelligence and Computing Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCIC.2014.7238315","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

肺声信号分析提供了肺当前状态的基本信息。在本文中,我们打算通过肺声信号记录来区分正常的气道阻塞病理和间质性肺疾病。该方法从肺声信号中提取Mel频率倒谱系数(MFCC)和AR系数作为特征。然后使用人工神经网络(ANN)分类器对提取的特征进行分类。利用混淆矩阵技术对分类器性能进行了分析。MFCC特征和AR系数特征的平均分类准确率分别为92.59%和91.69%。利用混淆矩阵对神经网络分类器进行性能分析,发现MFCC特征的分类准确率分别为92.75%、91.30%和92.75%,分别为正常、气道阻塞和间质性肺病。同样,正常、气道阻塞和间质性肺疾病的AR系数特征分类准确率分别为92.75%、91.30%和89.85%。分析表明,该方法在区分正常、气道阻塞和间质性肺疾病方面显示出良好的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Classification of respiratory pathology in pulmonary acoustic signals using parametric features and artificial neural network
Pulmonary acoustic signal analysis provides essential information on the present state of the Lungs. In this paper, we intend to distinguish between normal, airway obstruction pathology and interstitial lung disease using pulmonary acoustic signal recordings. The proposed method extracts Mel frequency cepstral coefficients (MFCC) and AR Coefficients as features from pulmonary acoustic signals. The extracted features are then classified using Artificial Neural Network (ANN) classifier. The classifier performance is analysed by using confusion matrix technique. A mean classification accuracy of 92.59% and 91.69% was reported for the MFCC features and AR coefficients features respectively. The performance analysis of the ANN classifier using confusion matrix revealed that normal, airway obstruction and interstitial lung disease are classified at 92.75%, 91.30% and 92.75% classification accuracy respectively for the MFCC features. Similarly, normal, airway obstruction and interstitial lung disease are classified at 92.75%, 91.30% and 89.85% classification accuracy respectively for the AR coefficient features. The analysis reveals that the proposed method shows promising outcome in distinguishing between the normal, airway obstruction and interstitial lung disease.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Automatic generation control of three area hydro-thermal power systems with electric and mechanical governor Analysis of AQM router of network supporting multiple TCP flows Data analytic engineering and its application in earthquake engineering: An overview Comparative analysis of digital image stabilization by using empirical mode decomposition methods Analytical approach towards packet drop attacks in mobile ad-hoc networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1