特征检测器在人体活动识别中的比较研究

Amira Ali Bebars, E. Hemayed
{"title":"特征检测器在人体活动识别中的比较研究","authors":"Amira Ali Bebars, E. Hemayed","doi":"10.1109/ICENCO.2013.6736470","DOIUrl":null,"url":null,"abstract":"This paper quantifies existing techniques for feature detection in human action recognition. Four different feature detection approaches are investigated using Motion SIFT descriptor, a standard bag-of-features SVM classifier with x2 kernel. Specifically we used two popular feature detectors; Motion SIFT (MOSIFT) and Motion FAST (MOFAST) with and without Statis interest points. The system was tested on commonly used datasets; KTH and Weizmann. Based on several experiments we conclude that using MOSIFT detector with Statis interest point results in the best classification accuracy on Weizmann dataset but MOFAST without Statis points achieve the best classification accuracy on KTH dataset.","PeriodicalId":256564,"journal":{"name":"2013 9th International Computer Engineering Conference (ICENCO)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Comparative study for feature detectors in human activity recognition\",\"authors\":\"Amira Ali Bebars, E. Hemayed\",\"doi\":\"10.1109/ICENCO.2013.6736470\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper quantifies existing techniques for feature detection in human action recognition. Four different feature detection approaches are investigated using Motion SIFT descriptor, a standard bag-of-features SVM classifier with x2 kernel. Specifically we used two popular feature detectors; Motion SIFT (MOSIFT) and Motion FAST (MOFAST) with and without Statis interest points. The system was tested on commonly used datasets; KTH and Weizmann. Based on several experiments we conclude that using MOSIFT detector with Statis interest point results in the best classification accuracy on Weizmann dataset but MOFAST without Statis points achieve the best classification accuracy on KTH dataset.\",\"PeriodicalId\":256564,\"journal\":{\"name\":\"2013 9th International Computer Engineering Conference (ICENCO)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 9th International Computer Engineering Conference (ICENCO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICENCO.2013.6736470\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 9th International Computer Engineering Conference (ICENCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICENCO.2013.6736470","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

本文对人类动作识别中现有的特征检测技术进行了量化。使用运动SIFT描述子(一种具有x2核的标准特征袋支持向量机分类器)研究了四种不同的特征检测方法。具体来说,我们使用了两种流行的特征检测器;运动SIFT (MOSIFT)和运动FAST (MOFAST)有和没有静态兴趣点。在常用数据集上对系统进行了测试;KTH和魏茨曼。实验结果表明,带Statis兴趣点的MOSIFT检测器在Weizmann数据集上的分类精度最高,而不带Statis兴趣点的MOFAST检测器在KTH数据集上的分类精度最高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Comparative study for feature detectors in human activity recognition
This paper quantifies existing techniques for feature detection in human action recognition. Four different feature detection approaches are investigated using Motion SIFT descriptor, a standard bag-of-features SVM classifier with x2 kernel. Specifically we used two popular feature detectors; Motion SIFT (MOSIFT) and Motion FAST (MOFAST) with and without Statis interest points. The system was tested on commonly used datasets; KTH and Weizmann. Based on several experiments we conclude that using MOSIFT detector with Statis interest point results in the best classification accuracy on Weizmann dataset but MOFAST without Statis points achieve the best classification accuracy on KTH dataset.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Novel online tutor modeling for intelligent tutoring systems Applying formal concept analysis for visualizing DNA methylation status in breast cancer tumor subtypes MPI parallel implementation of 3D object categorization using spin-images A novel framework for scalable equalization Ensemble-based classifiers for prostate cancer diagnosis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1