Jeffrey Fong, Xiang Wang, Yaxuan Qi, Jun Li, Weirong Jiang
{"title":"基于FPGA的太比特分组分类可扩展架构","authors":"Jeffrey Fong, Xiang Wang, Yaxuan Qi, Jun Li, Weirong Jiang","doi":"10.1109/HOTI.2012.17","DOIUrl":null,"url":null,"abstract":"Packet classification is a fundamental enabling function for various applications in switches, routers and firewalls. Due to their performance and scalability limitations, current packet classification solutions are insufficient in ad-dressing the challenges from the growing network bandwidth and the increasing number of new applications. This paper presents a scalable parallel architecture, named Para Split, for high-performance packet classification. We propose a rule set partitioning algorithm based on range-point conversion to reduce the overall memory requirement. We further optimize the partitioning by applying the Simulated Annealing technique. We implement the architecture on a Field Programmable Gate Array (FPGA) to achieve high throughput by exploiting the abundant parallelism in the hardware. Evaluation using real-life data sets including Open Flow-like 11-tuple rules shows that Para Split achieves significant reduction in memory requirement, compared with the-state-of-the-art algorithms such as Hyper Split [6] and EffiCuts [8]. Because of the memory efficiency of Para Split, our FPGA design can support in the on-chip memory multiple engines, each of which contains up to 10K complex rules. As a result, the architecture with multiple Para Split engines in parallel can achieve up to Terabit per second throughput for large and complex rule sets on a single FPGA device.","PeriodicalId":197180,"journal":{"name":"2012 IEEE 20th Annual Symposium on High-Performance Interconnects","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"66","resultStr":"{\"title\":\"ParaSplit: A Scalable Architecture on FPGA for Terabit Packet Classification\",\"authors\":\"Jeffrey Fong, Xiang Wang, Yaxuan Qi, Jun Li, Weirong Jiang\",\"doi\":\"10.1109/HOTI.2012.17\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Packet classification is a fundamental enabling function for various applications in switches, routers and firewalls. Due to their performance and scalability limitations, current packet classification solutions are insufficient in ad-dressing the challenges from the growing network bandwidth and the increasing number of new applications. This paper presents a scalable parallel architecture, named Para Split, for high-performance packet classification. We propose a rule set partitioning algorithm based on range-point conversion to reduce the overall memory requirement. We further optimize the partitioning by applying the Simulated Annealing technique. We implement the architecture on a Field Programmable Gate Array (FPGA) to achieve high throughput by exploiting the abundant parallelism in the hardware. Evaluation using real-life data sets including Open Flow-like 11-tuple rules shows that Para Split achieves significant reduction in memory requirement, compared with the-state-of-the-art algorithms such as Hyper Split [6] and EffiCuts [8]. Because of the memory efficiency of Para Split, our FPGA design can support in the on-chip memory multiple engines, each of which contains up to 10K complex rules. As a result, the architecture with multiple Para Split engines in parallel can achieve up to Terabit per second throughput for large and complex rule sets on a single FPGA device.\",\"PeriodicalId\":197180,\"journal\":{\"name\":\"2012 IEEE 20th Annual Symposium on High-Performance Interconnects\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"66\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE 20th Annual Symposium on High-Performance Interconnects\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HOTI.2012.17\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE 20th Annual Symposium on High-Performance Interconnects","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HOTI.2012.17","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
ParaSplit: A Scalable Architecture on FPGA for Terabit Packet Classification
Packet classification is a fundamental enabling function for various applications in switches, routers and firewalls. Due to their performance and scalability limitations, current packet classification solutions are insufficient in ad-dressing the challenges from the growing network bandwidth and the increasing number of new applications. This paper presents a scalable parallel architecture, named Para Split, for high-performance packet classification. We propose a rule set partitioning algorithm based on range-point conversion to reduce the overall memory requirement. We further optimize the partitioning by applying the Simulated Annealing technique. We implement the architecture on a Field Programmable Gate Array (FPGA) to achieve high throughput by exploiting the abundant parallelism in the hardware. Evaluation using real-life data sets including Open Flow-like 11-tuple rules shows that Para Split achieves significant reduction in memory requirement, compared with the-state-of-the-art algorithms such as Hyper Split [6] and EffiCuts [8]. Because of the memory efficiency of Para Split, our FPGA design can support in the on-chip memory multiple engines, each of which contains up to 10K complex rules. As a result, the architecture with multiple Para Split engines in parallel can achieve up to Terabit per second throughput for large and complex rule sets on a single FPGA device.