良好的普适计算研究需要艰苦的数据标记工作:我们在活动识别和室内定位研究方面的经验

T. Maekawa
{"title":"良好的普适计算研究需要艰苦的数据标记工作:我们在活动识别和室内定位研究方面的经验","authors":"T. Maekawa","doi":"10.1109/PERCOMW.2017.7917506","DOIUrl":null,"url":null,"abstract":"Preparing and labeling sensing data are necessary when we develop state-of-the-art sensing devices or methods in our studies. Since developing and proposing new sensing devices or modalities are important in the pervasive computing and ubicomp research communities, we need to provide high quality labeled data by making use of our limited time whenever we develop a new sensing device. In this keynote talk, we first introduce our recent studies on activity recognition and indoor positioning based on machine learning. Later, we discuss important aspects of producing labeled data and share our experiences gathered during our research activities.","PeriodicalId":319638,"journal":{"name":"2017 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Good pervasive computing studies require laborious data labeling efforts: Our experience in activity recognition and indoor positioning studies\",\"authors\":\"T. Maekawa\",\"doi\":\"10.1109/PERCOMW.2017.7917506\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Preparing and labeling sensing data are necessary when we develop state-of-the-art sensing devices or methods in our studies. Since developing and proposing new sensing devices or modalities are important in the pervasive computing and ubicomp research communities, we need to provide high quality labeled data by making use of our limited time whenever we develop a new sensing device. In this keynote talk, we first introduce our recent studies on activity recognition and indoor positioning based on machine learning. Later, we discuss important aspects of producing labeled data and share our experiences gathered during our research activities.\",\"PeriodicalId\":319638,\"journal\":{\"name\":\"2017 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PERCOMW.2017.7917506\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PERCOMW.2017.7917506","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

当我们在研究中开发最先进的传感设备或方法时,准备和标记传感数据是必要的。由于开发和提出新的传感设备或模式在普适计算和通用计算机研究界非常重要,因此每当我们开发新的传感设备时,我们需要利用有限的时间提供高质量的标记数据。在本次主题演讲中,我们首先介绍了我们最近在基于机器学习的活动识别和室内定位方面的研究。随后,我们讨论了产生标签数据的重要方面,并分享了我们在研究活动中收集的经验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Good pervasive computing studies require laborious data labeling efforts: Our experience in activity recognition and indoor positioning studies
Preparing and labeling sensing data are necessary when we develop state-of-the-art sensing devices or methods in our studies. Since developing and proposing new sensing devices or modalities are important in the pervasive computing and ubicomp research communities, we need to provide high quality labeled data by making use of our limited time whenever we develop a new sensing device. In this keynote talk, we first introduce our recent studies on activity recognition and indoor positioning based on machine learning. Later, we discuss important aspects of producing labeled data and share our experiences gathered during our research activities.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Sensitivity to web hosting in a mobile field survey NFC based dataset annotation within a behavioral alerting platform An aggregation and visualization technique for crowd-sourced continuous monitoring of transport infrastructures Trainwear: A real-time assisted training feedback system with fabric wearable sensors Toward real-time in-home activity recognition using indoor positioning sensor and power meters
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1