印度中部马哈拉施特拉邦瓦尔达河谷煤田地表温度与归一化植被指数(NDVI)的相关性

Nova Geodesia Pub Date : 2022-09-30 DOI:10.55779/ng2353
Z. Khan, Akram Javed
{"title":"印度中部马哈拉施特拉邦瓦尔达河谷煤田地表温度与归一化植被指数(NDVI)的相关性","authors":"Z. Khan, Akram Javed","doi":"10.55779/ng2353","DOIUrl":null,"url":null,"abstract":"Global warming has emerged as one of humanity’s most pressing environmental issues and Land Surface Temperature (LST) is increasingly being used to assess increased warming in urban areas. The exploitation and usage of natural resources create significant environmental harm in mining, especially over land surface. The link between LST and NDVI (Normalized Difference Vegetation Index) is highly intriguing, and draws remote sensing specialists from all over the world. Present study makes an effort to retrieve the LST and its correlation with NDVI in parts of Wardha Valley Coalfield, which in central India. Four sets of Landsat-5 (TM) data of summer and winter have been used for 1991 and 2006, whereas two sets of Landsat-8 (OLI) data have been chosen for 2021. Mono-window algorithm was applied to retrieve LST from multi-temporal Landsat satellite sensors. Five LU/LC categories have been delineated viz. Vegetation/Forest, Mine/Industry, Overburden dumps/built-up, Waste land and Water body by using maximum likelihood classification algorithm. The study reveals that the mean LST of five LU/LC categories of both summer and winter seasons has increased during 1991-2006 period which suggests an example of Urban Heat Island (UHI). However, mean LST for five LU/LC categories has slightly decreased during 2006-2021 period which represents an example of Urban Cool Island (UCI). Moreover, over all mean LST of summer and winter seasons has increased by 7.39 °C and 4.51 °C respectively during 1991-2021 period. The study also examines NDVI-LST inverse relationship, which shows strong negative correlation in summer as well as in winter. Therefore, it can be concluded that surface temperature is highly controlled by surface land use type such as vegetation, built-up land, mining area etc. The presented results in this study will significantly help in future planning of the district and also provide a database for upcoming climate control goals.","PeriodicalId":109211,"journal":{"name":"Nova Geodesia","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Correlation between land surface temperature (LST) and normalized difference vegetation index (NDVI) in Wardha Valley Coalfield, Maharashtra, Central India\",\"authors\":\"Z. Khan, Akram Javed\",\"doi\":\"10.55779/ng2353\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Global warming has emerged as one of humanity’s most pressing environmental issues and Land Surface Temperature (LST) is increasingly being used to assess increased warming in urban areas. The exploitation and usage of natural resources create significant environmental harm in mining, especially over land surface. The link between LST and NDVI (Normalized Difference Vegetation Index) is highly intriguing, and draws remote sensing specialists from all over the world. Present study makes an effort to retrieve the LST and its correlation with NDVI in parts of Wardha Valley Coalfield, which in central India. Four sets of Landsat-5 (TM) data of summer and winter have been used for 1991 and 2006, whereas two sets of Landsat-8 (OLI) data have been chosen for 2021. Mono-window algorithm was applied to retrieve LST from multi-temporal Landsat satellite sensors. Five LU/LC categories have been delineated viz. Vegetation/Forest, Mine/Industry, Overburden dumps/built-up, Waste land and Water body by using maximum likelihood classification algorithm. The study reveals that the mean LST of five LU/LC categories of both summer and winter seasons has increased during 1991-2006 period which suggests an example of Urban Heat Island (UHI). However, mean LST for five LU/LC categories has slightly decreased during 2006-2021 period which represents an example of Urban Cool Island (UCI). Moreover, over all mean LST of summer and winter seasons has increased by 7.39 °C and 4.51 °C respectively during 1991-2021 period. The study also examines NDVI-LST inverse relationship, which shows strong negative correlation in summer as well as in winter. Therefore, it can be concluded that surface temperature is highly controlled by surface land use type such as vegetation, built-up land, mining area etc. The presented results in this study will significantly help in future planning of the district and also provide a database for upcoming climate control goals.\",\"PeriodicalId\":109211,\"journal\":{\"name\":\"Nova Geodesia\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nova Geodesia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.55779/ng2353\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nova Geodesia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.55779/ng2353","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

全球变暖已成为人类最紧迫的环境问题之一,陆地表面温度(LST)越来越多地被用于评估城市地区变暖的加剧。自然资源的开发和利用在采矿中造成重大的环境危害,特别是在陆地上。LST和NDVI(归一化植被指数)之间的联系非常有趣,吸引了来自世界各地的遥感专家。本文对印度中部瓦尔达河谷煤田部分地区的地表温度及其与NDVI的相关性进行了研究。1991年和2006年使用了四组Landsat-5 (TM)夏季和冬季数据,2021年选择了两组Landsat-8 (OLI)数据。采用单窗算法从多时相Landsat卫星传感器中提取地表温度。利用最大似然分类算法,划分了植被/森林、矿山/工业、覆盖堆置物/建筑、荒地和水体等五个LU/LC类别。研究表明,1991—2006年夏季和冬季5个LU/LC类别的平均地表温度都有所增加,这是一个城市热岛(UHI)的例子。然而,2006-2021年期间,五个LU/LC类别的平均地表温度略有下降,这是城市冷岛(UCI)的一个例子。1991-2021年,夏季和冬季平均地表温度分别上升了7.39°C和4.51°C。研究还检验了ndvi与lst的负相关关系,在夏季和冬季都表现出较强的负相关。因此,地表温度受植被、建成区、矿区等地表土地利用类型的高度控制。本研究的结果将大大有助于该地区未来的规划,并为即将到来的气候控制目标提供数据库。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Correlation between land surface temperature (LST) and normalized difference vegetation index (NDVI) in Wardha Valley Coalfield, Maharashtra, Central India
Global warming has emerged as one of humanity’s most pressing environmental issues and Land Surface Temperature (LST) is increasingly being used to assess increased warming in urban areas. The exploitation and usage of natural resources create significant environmental harm in mining, especially over land surface. The link between LST and NDVI (Normalized Difference Vegetation Index) is highly intriguing, and draws remote sensing specialists from all over the world. Present study makes an effort to retrieve the LST and its correlation with NDVI in parts of Wardha Valley Coalfield, which in central India. Four sets of Landsat-5 (TM) data of summer and winter have been used for 1991 and 2006, whereas two sets of Landsat-8 (OLI) data have been chosen for 2021. Mono-window algorithm was applied to retrieve LST from multi-temporal Landsat satellite sensors. Five LU/LC categories have been delineated viz. Vegetation/Forest, Mine/Industry, Overburden dumps/built-up, Waste land and Water body by using maximum likelihood classification algorithm. The study reveals that the mean LST of five LU/LC categories of both summer and winter seasons has increased during 1991-2006 period which suggests an example of Urban Heat Island (UHI). However, mean LST for five LU/LC categories has slightly decreased during 2006-2021 period which represents an example of Urban Cool Island (UCI). Moreover, over all mean LST of summer and winter seasons has increased by 7.39 °C and 4.51 °C respectively during 1991-2021 period. The study also examines NDVI-LST inverse relationship, which shows strong negative correlation in summer as well as in winter. Therefore, it can be concluded that surface temperature is highly controlled by surface land use type such as vegetation, built-up land, mining area etc. The presented results in this study will significantly help in future planning of the district and also provide a database for upcoming climate control goals.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Effect of soil and water conservation practices and slope gradient on organic carbon stocks micronutrients: A case study on Kulkullessa sub-watershed, Eastern Ethiopia Introduction pages, Nova Geodesia 4(1), 2024 The cross-disciplinary influence of aerial measurement techniques: Exploring archaeological studies through photogrammetry and LiDAR The complementary role of indigenous knowledge systems in landslide disaster management in Kanungu District, Uganda Exploring distinctive morphological traits in Beilschmiedia mannii georeferenced by GPS: Implication for conservation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1