基于生物启发Salp群算法的时变电压相关负荷风电DG优化分配

A. Ahmed, M. Nadeem, I. A. Sajjad, R. Bo, I. Khan
{"title":"基于生物启发Salp群算法的时变电压相关负荷风电DG优化分配","authors":"A. Ahmed, M. Nadeem, I. A. Sajjad, R. Bo, I. Khan","doi":"10.1109/iCoMET48670.2020.9074118","DOIUrl":null,"url":null,"abstract":"Increased energy demand puts burden on power system operations and fossils fuel depletion. Renewable Distributed Generation (DG) integration in the existing network is an effective way to fulfill the increasing load demand. Optimal allocation of DG critically depends on uncertainty in power generation and time varying voltage dependent (TVVD) load models. This paper presents optimal allocation of wind DG in the distribution system considering probabilistic generation and TVVD load models. Salp Swarm Algorithm (SSA) is implemented for minimization of Multi-objective function comprised of voltage deviation, real and reactive losses and voltage stability indices. The effectiveness of proposed approach is tested on IEEE 69-bus and 33-bus systems. Results show that TVVD load models and time varying generation plays an imperative part in DG planning. Further, results also demonstrate the advantage of SSA in terms of better convergence characteristics and less computation time.","PeriodicalId":431051,"journal":{"name":"2020 3rd International Conference on Computing, Mathematics and Engineering Technologies (iCoMET)","volume":"122 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Optimal Allocation of Wind DG with Time Varying Voltage Dependent Loads Using Bio-Inspired: Salp Swarm Algorithm\",\"authors\":\"A. Ahmed, M. Nadeem, I. A. Sajjad, R. Bo, I. Khan\",\"doi\":\"10.1109/iCoMET48670.2020.9074118\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Increased energy demand puts burden on power system operations and fossils fuel depletion. Renewable Distributed Generation (DG) integration in the existing network is an effective way to fulfill the increasing load demand. Optimal allocation of DG critically depends on uncertainty in power generation and time varying voltage dependent (TVVD) load models. This paper presents optimal allocation of wind DG in the distribution system considering probabilistic generation and TVVD load models. Salp Swarm Algorithm (SSA) is implemented for minimization of Multi-objective function comprised of voltage deviation, real and reactive losses and voltage stability indices. The effectiveness of proposed approach is tested on IEEE 69-bus and 33-bus systems. Results show that TVVD load models and time varying generation plays an imperative part in DG planning. Further, results also demonstrate the advantage of SSA in terms of better convergence characteristics and less computation time.\",\"PeriodicalId\":431051,\"journal\":{\"name\":\"2020 3rd International Conference on Computing, Mathematics and Engineering Technologies (iCoMET)\",\"volume\":\"122 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 3rd International Conference on Computing, Mathematics and Engineering Technologies (iCoMET)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/iCoMET48670.2020.9074118\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 3rd International Conference on Computing, Mathematics and Engineering Technologies (iCoMET)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/iCoMET48670.2020.9074118","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

能源需求的增加给电力系统的运行带来了负担,化石燃料的消耗也随之增加。可再生能源分布式发电在既有电网中的集成是满足日益增长的负荷需求的有效途径。DG的优化分配主要取决于发电和时变电压相关(TVVD)负荷模型的不确定性。本文提出了考虑概率发电和TVVD负荷模型的配电网风电DG优化配置问题。采用Salp群算法求解由电压偏差、实损和无功损以及电压稳定指标组成的多目标函数的最小化问题。在IEEE 69总线和33总线系统上测试了该方法的有效性。结果表明,TVVD负荷模型和时变发电在DG规划中起着重要的作用。此外,结果还证明了SSA在更好的收敛特性和更少的计算时间方面的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Optimal Allocation of Wind DG with Time Varying Voltage Dependent Loads Using Bio-Inspired: Salp Swarm Algorithm
Increased energy demand puts burden on power system operations and fossils fuel depletion. Renewable Distributed Generation (DG) integration in the existing network is an effective way to fulfill the increasing load demand. Optimal allocation of DG critically depends on uncertainty in power generation and time varying voltage dependent (TVVD) load models. This paper presents optimal allocation of wind DG in the distribution system considering probabilistic generation and TVVD load models. Salp Swarm Algorithm (SSA) is implemented for minimization of Multi-objective function comprised of voltage deviation, real and reactive losses and voltage stability indices. The effectiveness of proposed approach is tested on IEEE 69-bus and 33-bus systems. Results show that TVVD load models and time varying generation plays an imperative part in DG planning. Further, results also demonstrate the advantage of SSA in terms of better convergence characteristics and less computation time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Detecting Faulty Sensors by Analyzing the Uncertain Data Using Probabilistic Database Construction of the Exact Solution of Ripa Model with Primitive Variable Approach A Review on Hybrid Energy Storage Systems in Microgrids Meta-model for Stress Testing on Blockchain Nodes Ethics of Artificial Intelligence: Research Challenges and Potential Solutions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1