{"title":"具有全局误差界的参数曲面的可展条逼近","authors":"Yong-Jin Liu, Yu-Kun Lai, Shimin Hu","doi":"10.1109/PG.2007.13","DOIUrl":null,"url":null,"abstract":"Developable surfaces have many desired properties in manufacturing process. Since most existing CAD systems utilize parametric surfaces as the design primitive, there is a great demand in industry to convert a parametric surface within a prescribed global error bound into developable patches. In this work we propose a simple and efficient solution to approximate a general parametric surface with a minimum set of C0-joint developable strips. The key contribution of the proposed algorithm is that, several global optimization problems are elegantly solved in a sequence that offers a controllable global error bound on the developable surface approximation. Experimental results are presented to demonstrate the effectiveness and stability of the proposed algorithm.","PeriodicalId":376934,"journal":{"name":"15th Pacific Conference on Computer Graphics and Applications (PG'07)","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Developable Strip Approximation of Parametric Surfaces with Global Error Bounds\",\"authors\":\"Yong-Jin Liu, Yu-Kun Lai, Shimin Hu\",\"doi\":\"10.1109/PG.2007.13\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Developable surfaces have many desired properties in manufacturing process. Since most existing CAD systems utilize parametric surfaces as the design primitive, there is a great demand in industry to convert a parametric surface within a prescribed global error bound into developable patches. In this work we propose a simple and efficient solution to approximate a general parametric surface with a minimum set of C0-joint developable strips. The key contribution of the proposed algorithm is that, several global optimization problems are elegantly solved in a sequence that offers a controllable global error bound on the developable surface approximation. Experimental results are presented to demonstrate the effectiveness and stability of the proposed algorithm.\",\"PeriodicalId\":376934,\"journal\":{\"name\":\"15th Pacific Conference on Computer Graphics and Applications (PG'07)\",\"volume\":\"56 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"15th Pacific Conference on Computer Graphics and Applications (PG'07)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PG.2007.13\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"15th Pacific Conference on Computer Graphics and Applications (PG'07)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PG.2007.13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Developable Strip Approximation of Parametric Surfaces with Global Error Bounds
Developable surfaces have many desired properties in manufacturing process. Since most existing CAD systems utilize parametric surfaces as the design primitive, there is a great demand in industry to convert a parametric surface within a prescribed global error bound into developable patches. In this work we propose a simple and efficient solution to approximate a general parametric surface with a minimum set of C0-joint developable strips. The key contribution of the proposed algorithm is that, several global optimization problems are elegantly solved in a sequence that offers a controllable global error bound on the developable surface approximation. Experimental results are presented to demonstrate the effectiveness and stability of the proposed algorithm.