学习一个判别字典,用于局部性约束编码和稀疏表示

Jin Bin, Zhang Jing, Zhiyong Yang
{"title":"学习一个判别字典,用于局部性约束编码和稀疏表示","authors":"Jin Bin, Zhang Jing, Zhiyong Yang","doi":"10.1109/ICCCNT.2014.6963006","DOIUrl":null,"url":null,"abstract":"Motivated by image reconstruction, sparse representation based classification (SRC) and locality-constrained linear coding (LLC) have been shown to be effective methods for applications. In this paper, we propose a new dictionary learning and sparse representation approach. During sparse coding step, we incorporate locality on representation samples, which preserves local data structure, resulting in improved classification. In dictionary learning step, a `discriminative' sparse coding error criterion and an `optimal' classification performance criterion are added into the objective function for better discriminating power. Experimental results demonstrate that our algorithm outperforms many recently proposed sparse representation techniques for face and SAR recognition.","PeriodicalId":140744,"journal":{"name":"Fifth International Conference on Computing, Communications and Networking Technologies (ICCCNT)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Learning a discriminative dictionary for locality constrained coding and sparse representation\",\"authors\":\"Jin Bin, Zhang Jing, Zhiyong Yang\",\"doi\":\"10.1109/ICCCNT.2014.6963006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Motivated by image reconstruction, sparse representation based classification (SRC) and locality-constrained linear coding (LLC) have been shown to be effective methods for applications. In this paper, we propose a new dictionary learning and sparse representation approach. During sparse coding step, we incorporate locality on representation samples, which preserves local data structure, resulting in improved classification. In dictionary learning step, a `discriminative' sparse coding error criterion and an `optimal' classification performance criterion are added into the objective function for better discriminating power. Experimental results demonstrate that our algorithm outperforms many recently proposed sparse representation techniques for face and SAR recognition.\",\"PeriodicalId\":140744,\"journal\":{\"name\":\"Fifth International Conference on Computing, Communications and Networking Technologies (ICCCNT)\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fifth International Conference on Computing, Communications and Networking Technologies (ICCCNT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCCNT.2014.6963006\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fifth International Conference on Computing, Communications and Networking Technologies (ICCCNT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCCNT.2014.6963006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

基于图像重构的稀疏表示分类(SRC)和位置约束线性编码(LLC)已被证明是一种有效的应用方法。在本文中,我们提出了一种新的字典学习和稀疏表示方法。在稀疏编码步骤中,我们在表示样本上加入了局部性,保留了局部数据结构,从而提高了分类效率。在字典学习步骤中,在目标函数中加入“判别性”稀疏编码错误准则和“最优”分类性能准则,以获得更好的判别能力。实验结果表明,我们的算法优于最近提出的人脸和SAR识别的稀疏表示技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Learning a discriminative dictionary for locality constrained coding and sparse representation
Motivated by image reconstruction, sparse representation based classification (SRC) and locality-constrained linear coding (LLC) have been shown to be effective methods for applications. In this paper, we propose a new dictionary learning and sparse representation approach. During sparse coding step, we incorporate locality on representation samples, which preserves local data structure, resulting in improved classification. In dictionary learning step, a `discriminative' sparse coding error criterion and an `optimal' classification performance criterion are added into the objective function for better discriminating power. Experimental results demonstrate that our algorithm outperforms many recently proposed sparse representation techniques for face and SAR recognition.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Blind equalization of short burst signals based on twin support vector regressor and data-reusing method Survey on scheduling in hybrid clouds Extending self-organizing network availability using genetic algorithm An agent-based searchable encryption scheme in mobile computing environment Utilizing neighbor information in image segmentation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1