文献和文章检索的结果是否可以推广到对话响应的检索?

Gustavo Penha, C. Hauff
{"title":"文献和文章检索的结果是否可以推广到对话响应的检索?","authors":"Gustavo Penha, C. Hauff","doi":"10.48550/arXiv.2301.05508","DOIUrl":null,"url":null,"abstract":"A number of learned sparse and dense retrieval approaches have recently been proposed and proven effective in tasks such as passage retrieval and document retrieval. In this paper we analyze with a replicability study if the lessons learned generalize to the retrieval of responses for dialogues, an important task for the increasingly popular field of conversational search. Unlike passage and document retrieval where documents are usually longer than queries, in response ranking for dialogues the queries (dialogue contexts) are often longer than the documents (responses). Additionally, dialogues have a particular structure, i.e. multiple utterances by different users. With these differences in mind, we here evaluate how generalizable the following major findings from previous works are: (F1) query expansion outperforms a no-expansion baseline; (F2) document expansion outperforms a no-expansion baseline; (F3) zero-shot dense retrieval underperforms sparse baselines; (F4) dense retrieval outperforms sparse baselines; (F5) hard negative sampling is better than random sampling for training dense models. Our experiments -- based on three different information-seeking dialogue datasets -- reveal that four out of five findings (F2-F5) generalize to our domain","PeriodicalId":126309,"journal":{"name":"European Conference on Information Retrieval","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Do the Findings of Document and Passage Retrieval Generalize to the Retrieval of Responses for Dialogues?\",\"authors\":\"Gustavo Penha, C. Hauff\",\"doi\":\"10.48550/arXiv.2301.05508\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A number of learned sparse and dense retrieval approaches have recently been proposed and proven effective in tasks such as passage retrieval and document retrieval. In this paper we analyze with a replicability study if the lessons learned generalize to the retrieval of responses for dialogues, an important task for the increasingly popular field of conversational search. Unlike passage and document retrieval where documents are usually longer than queries, in response ranking for dialogues the queries (dialogue contexts) are often longer than the documents (responses). Additionally, dialogues have a particular structure, i.e. multiple utterances by different users. With these differences in mind, we here evaluate how generalizable the following major findings from previous works are: (F1) query expansion outperforms a no-expansion baseline; (F2) document expansion outperforms a no-expansion baseline; (F3) zero-shot dense retrieval underperforms sparse baselines; (F4) dense retrieval outperforms sparse baselines; (F5) hard negative sampling is better than random sampling for training dense models. Our experiments -- based on three different information-seeking dialogue datasets -- reveal that four out of five findings (F2-F5) generalize to our domain\",\"PeriodicalId\":126309,\"journal\":{\"name\":\"European Conference on Information Retrieval\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Conference on Information Retrieval\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2301.05508\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Conference on Information Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2301.05508","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

近年来,人们提出了许多学习稀疏和密集检索方法,并证明它们在文章检索和文档检索等任务中是有效的。在本文中,我们通过可复制性研究来分析这些经验教训是否可以推广到对话响应的检索中,这是日益流行的对话搜索领域的一项重要任务。与通道和文档检索(文档通常比查询长)不同,在对话的响应排序中,查询(对话上下文)通常比文档(响应)长。此外,对话具有特定的结构,即不同用户的多个话语。考虑到这些差异,我们在这里评估从以前的工作中得出的以下主要发现的普遍性:(F1)查询扩展优于无扩展基线;(F2)文档扩展优于无扩展基线;(F3)零采样密集检索不如稀疏基线;(F4)密集检索优于稀疏基线;(F5)对于训练密集模型,硬负抽样优于随机抽样。我们的实验——基于三个不同的信息搜索对话数据集——揭示了五分之四的发现(F2-F5)可以推广到我们的领域
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Do the Findings of Document and Passage Retrieval Generalize to the Retrieval of Responses for Dialogues?
A number of learned sparse and dense retrieval approaches have recently been proposed and proven effective in tasks such as passage retrieval and document retrieval. In this paper we analyze with a replicability study if the lessons learned generalize to the retrieval of responses for dialogues, an important task for the increasingly popular field of conversational search. Unlike passage and document retrieval where documents are usually longer than queries, in response ranking for dialogues the queries (dialogue contexts) are often longer than the documents (responses). Additionally, dialogues have a particular structure, i.e. multiple utterances by different users. With these differences in mind, we here evaluate how generalizable the following major findings from previous works are: (F1) query expansion outperforms a no-expansion baseline; (F2) document expansion outperforms a no-expansion baseline; (F3) zero-shot dense retrieval underperforms sparse baselines; (F4) dense retrieval outperforms sparse baselines; (F5) hard negative sampling is better than random sampling for training dense models. Our experiments -- based on three different information-seeking dialogue datasets -- reveal that four out of five findings (F2-F5) generalize to our domain
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Experiments in News Bias Detection with Pre-trained Neural Transformers Is Interpretable Machine Learning Effective at Feature Selection for Neural Learning-to-Rank? Two-Step SPLADE: Simple, Efficient and Effective Approximation of SPLADE Exploring the Nexus Between Retrievability and Query Generation Strategies Countering Mainstream Bias via End-to-End Adaptive Local Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1