S. Derenzo, E. Bourret-Courchesne, F. James, M. Klintenberg, Y. Porter-Chapman, J. Wang, M. Weber
{"title":"用直流电离电导率鉴定半导体","authors":"S. Derenzo, E. Bourret-Courchesne, F. James, M. Klintenberg, Y. Porter-Chapman, J. Wang, M. Weber","doi":"10.1109/NSSMIC.2005.1596450","DOIUrl":null,"url":null,"abstract":"We describe a method for identifying semiconductor radiation detector materials based on the mobility of internally generated electrons and holes. It was designed for the early stages of exploration, when samples are not available as single crystals, but as crystalline powders. Samples are confined under pressure in an electric field and semiconductors are identified by an increase in d.c. conductivity during exposure to a high-intensity source of <sup>60</sup>Co gamma rays. Using this method, we have determined that BiOI, PbIF, BiPbO<sub>2</sub>Cl, BiPbO<sub>2</sub>Br, BiPbO<sub>2</sub>I, Bi<sub>2</sub>GdO<sub>4</sub>Cl, Pb<sub>3</sub>O<sub>2</sub>I<sub>2</sub>, and Pb<sub>5</sub>O<sub>4</sub>I<sub>2</sub> are semiconductors","PeriodicalId":105619,"journal":{"name":"IEEE Nuclear Science Symposium Conference Record, 2005","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Identifying semiconductors by D.C. ionization conductivity\",\"authors\":\"S. Derenzo, E. Bourret-Courchesne, F. James, M. Klintenberg, Y. Porter-Chapman, J. Wang, M. Weber\",\"doi\":\"10.1109/NSSMIC.2005.1596450\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We describe a method for identifying semiconductor radiation detector materials based on the mobility of internally generated electrons and holes. It was designed for the early stages of exploration, when samples are not available as single crystals, but as crystalline powders. Samples are confined under pressure in an electric field and semiconductors are identified by an increase in d.c. conductivity during exposure to a high-intensity source of <sup>60</sup>Co gamma rays. Using this method, we have determined that BiOI, PbIF, BiPbO<sub>2</sub>Cl, BiPbO<sub>2</sub>Br, BiPbO<sub>2</sub>I, Bi<sub>2</sub>GdO<sub>4</sub>Cl, Pb<sub>3</sub>O<sub>2</sub>I<sub>2</sub>, and Pb<sub>5</sub>O<sub>4</sub>I<sub>2</sub> are semiconductors\",\"PeriodicalId\":105619,\"journal\":{\"name\":\"IEEE Nuclear Science Symposium Conference Record, 2005\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Nuclear Science Symposium Conference Record, 2005\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NSSMIC.2005.1596450\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Nuclear Science Symposium Conference Record, 2005","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NSSMIC.2005.1596450","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Identifying semiconductors by D.C. ionization conductivity
We describe a method for identifying semiconductor radiation detector materials based on the mobility of internally generated electrons and holes. It was designed for the early stages of exploration, when samples are not available as single crystals, but as crystalline powders. Samples are confined under pressure in an electric field and semiconductors are identified by an increase in d.c. conductivity during exposure to a high-intensity source of 60Co gamma rays. Using this method, we have determined that BiOI, PbIF, BiPbO2Cl, BiPbO2Br, BiPbO2I, Bi2GdO4Cl, Pb3O2I2, and Pb5O4I2 are semiconductors