调度解决方案,支持可靠的实时应用程序

F. Sandrini, F. Giandomenico, A. Bondavalli, E. Nett
{"title":"调度解决方案,支持可靠的实时应用程序","authors":"F. Sandrini, F. Giandomenico, A. Bondavalli, E. Nett","doi":"10.1109/ISORC.2000.839519","DOIUrl":null,"url":null,"abstract":"This paper deals with tolerance to timing faults in time-constrained systems. TAFT (Time Aware Fault-Tolerant) is a recently devised approach which applies tolerance to timing violations. According to TAFT, a task is structured in a pair, to guarantee that deadlines are met (although possibly offering a degraded service) without requiring the knowledge of task attributes difficult to estimate in practice. Wide margin of actions is left by the TAFT approach in scheduling the task pairs, leading to disparate performances; up to now, poor attention has been devoted to analyse this aspect. The goal of this work is to investigate on the most appropriate scheduling policies to adopt in a system structured in the TAFT fashion, in accordance with system conditions and application requirements. To this end, all experimental evaluation will be conducted based on a variety of scheduling policies, to derive useful indications for the system designer about the most rewarding policies to apply.","PeriodicalId":127761,"journal":{"name":"Proceedings Third IEEE International Symposium on Object-Oriented Real-Time Distributed Computing (ISORC 2000) (Cat. No. PR00607)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Scheduling solutions for supporting dependable real-time applications\",\"authors\":\"F. Sandrini, F. Giandomenico, A. Bondavalli, E. Nett\",\"doi\":\"10.1109/ISORC.2000.839519\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper deals with tolerance to timing faults in time-constrained systems. TAFT (Time Aware Fault-Tolerant) is a recently devised approach which applies tolerance to timing violations. According to TAFT, a task is structured in a pair, to guarantee that deadlines are met (although possibly offering a degraded service) without requiring the knowledge of task attributes difficult to estimate in practice. Wide margin of actions is left by the TAFT approach in scheduling the task pairs, leading to disparate performances; up to now, poor attention has been devoted to analyse this aspect. The goal of this work is to investigate on the most appropriate scheduling policies to adopt in a system structured in the TAFT fashion, in accordance with system conditions and application requirements. To this end, all experimental evaluation will be conducted based on a variety of scheduling policies, to derive useful indications for the system designer about the most rewarding policies to apply.\",\"PeriodicalId\":127761,\"journal\":{\"name\":\"Proceedings Third IEEE International Symposium on Object-Oriented Real-Time Distributed Computing (ISORC 2000) (Cat. No. PR00607)\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings Third IEEE International Symposium on Object-Oriented Real-Time Distributed Computing (ISORC 2000) (Cat. No. PR00607)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISORC.2000.839519\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Third IEEE International Symposium on Object-Oriented Real-Time Distributed Computing (ISORC 2000) (Cat. No. PR00607)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISORC.2000.839519","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文研究了时间约束系统对定时故障的容错问题。TAFT(时间感知容错)是最近提出的一种容错方法。根据TAFT,一个任务以一对为结构,以保证满足最后期限(尽管可能提供降级的服务),而不需要了解在实践中难以估计的任务属性。TAFT方法在调度任务对时留下了很大的操作余地,导致了不同的性能;到目前为止,对这方面的分析还很少。这项工作的目标是根据系统条件和应用程序需求,研究在以TAFT方式构建的系统中采用的最合适的调度策略。为此,所有的实验评估都将基于各种调度策略进行,以便为系统设计者提供有用的指示,以确定最有效的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Scheduling solutions for supporting dependable real-time applications
This paper deals with tolerance to timing faults in time-constrained systems. TAFT (Time Aware Fault-Tolerant) is a recently devised approach which applies tolerance to timing violations. According to TAFT, a task is structured in a pair, to guarantee that deadlines are met (although possibly offering a degraded service) without requiring the knowledge of task attributes difficult to estimate in practice. Wide margin of actions is left by the TAFT approach in scheduling the task pairs, leading to disparate performances; up to now, poor attention has been devoted to analyse this aspect. The goal of this work is to investigate on the most appropriate scheduling policies to adopt in a system structured in the TAFT fashion, in accordance with system conditions and application requirements. To this end, all experimental evaluation will be conducted based on a variety of scheduling policies, to derive useful indications for the system designer about the most rewarding policies to apply.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
GLADE: a framework for building large object-oriented real-time distributed systems A semantics of UML state-machines using synchronous pre-order transition systems Load balancing to improve dependability and performance for program objects in distributed real-time co-operation over the Internet Architecture, design methodology, and component-based tools for a real-time inspection system A real-time heterogeneous distributed computing environment for multi-robot system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1