心电生物识别技术在心律失常中的应用研究

Zhao Wang, Yue Zhang
{"title":"心电生物识别技术在心律失常中的应用研究","authors":"Zhao Wang, Yue Zhang","doi":"10.1109/ICMB.2014.35","DOIUrl":null,"url":null,"abstract":"This paper studies the principle of ECG signals applied to identification, particularly considers the case of users' ECG abnormal conditions. This paper presents an improved multi-template matching algorithm for identification, which can achieve good discrimination effects under ECG abnormality. Normal and abnormal ECG templates are constructed by QRS complex, the discrimination is based on the correlation coefficient of the testing data and template. We used 44 ECG data files from the MIT-BIH Arrhythmia Database (MITDB) to measure the performance of the algorithm, extracted normal templates in 18 data files as well as normal and abnormal templates in the remaining 26 data files. The experiment obtained an 88.06% accuracy of template matching, when considering the discrimination results of all the testing data belong to one user, the individual recognition accuracy reaches 100%. Experiments showed that the improved multi-template matching algorithm characterized by QRS complex can be used to identify individuals in the state of arrhythmia.","PeriodicalId":273636,"journal":{"name":"2014 International Conference on Medical Biometrics","volume":"109 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Research on ECG Biometric in Cardiac Irregularity Conditions\",\"authors\":\"Zhao Wang, Yue Zhang\",\"doi\":\"10.1109/ICMB.2014.35\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper studies the principle of ECG signals applied to identification, particularly considers the case of users' ECG abnormal conditions. This paper presents an improved multi-template matching algorithm for identification, which can achieve good discrimination effects under ECG abnormality. Normal and abnormal ECG templates are constructed by QRS complex, the discrimination is based on the correlation coefficient of the testing data and template. We used 44 ECG data files from the MIT-BIH Arrhythmia Database (MITDB) to measure the performance of the algorithm, extracted normal templates in 18 data files as well as normal and abnormal templates in the remaining 26 data files. The experiment obtained an 88.06% accuracy of template matching, when considering the discrimination results of all the testing data belong to one user, the individual recognition accuracy reaches 100%. Experiments showed that the improved multi-template matching algorithm characterized by QRS complex can be used to identify individuals in the state of arrhythmia.\",\"PeriodicalId\":273636,\"journal\":{\"name\":\"2014 International Conference on Medical Biometrics\",\"volume\":\"109 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 International Conference on Medical Biometrics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMB.2014.35\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on Medical Biometrics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMB.2014.35","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

本文研究了心电信号应用于识别的原理,特别考虑了用户心电异常情况的情况。本文提出了一种改进的多模板匹配识别算法,该算法在心电异常情况下能够取得良好的识别效果。利用QRS复合体构建正常和异常心电图模板,根据检测数据与模板的相关系数进行判别。我们使用来自MIT-BIH心律失常数据库(MITDB)的44个心电数据文件来衡量算法的性能,提取了18个数据文件中的正常模板,以及其余26个数据文件中的正常和异常模板。实验获得了88.06%的模板匹配准确率,考虑到所有测试数据属于同一用户的识别结果,个体识别准确率达到100%。实验表明,改进的以QRS复合体为特征的多模板匹配算法可用于识别处于心律失常状态的个体。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Research on ECG Biometric in Cardiac Irregularity Conditions
This paper studies the principle of ECG signals applied to identification, particularly considers the case of users' ECG abnormal conditions. This paper presents an improved multi-template matching algorithm for identification, which can achieve good discrimination effects under ECG abnormality. Normal and abnormal ECG templates are constructed by QRS complex, the discrimination is based on the correlation coefficient of the testing data and template. We used 44 ECG data files from the MIT-BIH Arrhythmia Database (MITDB) to measure the performance of the algorithm, extracted normal templates in 18 data files as well as normal and abnormal templates in the remaining 26 data files. The experiment obtained an 88.06% accuracy of template matching, when considering the discrimination results of all the testing data belong to one user, the individual recognition accuracy reaches 100%. Experiments showed that the improved multi-template matching algorithm characterized by QRS complex can be used to identify individuals in the state of arrhythmia.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Interactive Tongue Body Segmentation A CGA-MRF Hybrid Method for Iris Texture Analysis and Modeling Smartphone Based Body Area Network System Real-Time Wireless ECG Biometrics with Mobile Devices The Objectifying System Using for Color Inspection of Traditional Chinese Medicine Based on the Digital Image Technology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1