基于行为数据的用户流失预测的潜在情感感知RNN模型

Meng Xi, Zhiling Luo, Naibo Wang, Jianrong Tao, Ying Li, Jianwei Yin
{"title":"基于行为数据的用户流失预测的潜在情感感知RNN模型","authors":"Meng Xi, Zhiling Luo, Naibo Wang, Jianrong Tao, Ying Li, Jianwei Yin","doi":"10.1109/SMDS49396.2020.00011","DOIUrl":null,"url":null,"abstract":"User Churn Prediction is a cutting-edge research area in the web service industry, it is the key for managing the user in the virtual world and provide feedback information for improving the corresponding web service. At present, most of the relevant work is to design a questionnaire to collect data of users' characteristics and feelings and then develop a general model by finding relevance. However, that kind of methods requires quite a time and manpower, and most web services can only obtain logs of users' behaviours and have no access to users' feature data. Therefore, it is a big challenge to conduct user churn prediction with only behavior data and get users' latent feelings from their action data in order to improve the accuracy of churn prediction. In this paper, a novel Latent Feelings-aware RNN model, namely LaFee, has been proposed to solve the user churn prediction problem by using only behaviour data. The latent feelings, proven to be satisfaction and aspiration, can be estimated through the intermediate variable of the trained LaFee. We also designed experiments on a real dataset and the results show that our methods outperform the baselines.","PeriodicalId":385149,"journal":{"name":"2020 IEEE International Conference on Smart Data Services (SMDS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A Latent Feelings-aware RNN Model for User Churn Prediction with only Behaviour data\",\"authors\":\"Meng Xi, Zhiling Luo, Naibo Wang, Jianrong Tao, Ying Li, Jianwei Yin\",\"doi\":\"10.1109/SMDS49396.2020.00011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"User Churn Prediction is a cutting-edge research area in the web service industry, it is the key for managing the user in the virtual world and provide feedback information for improving the corresponding web service. At present, most of the relevant work is to design a questionnaire to collect data of users' characteristics and feelings and then develop a general model by finding relevance. However, that kind of methods requires quite a time and manpower, and most web services can only obtain logs of users' behaviours and have no access to users' feature data. Therefore, it is a big challenge to conduct user churn prediction with only behavior data and get users' latent feelings from their action data in order to improve the accuracy of churn prediction. In this paper, a novel Latent Feelings-aware RNN model, namely LaFee, has been proposed to solve the user churn prediction problem by using only behaviour data. The latent feelings, proven to be satisfaction and aspiration, can be estimated through the intermediate variable of the trained LaFee. We also designed experiments on a real dataset and the results show that our methods outperform the baselines.\",\"PeriodicalId\":385149,\"journal\":{\"name\":\"2020 IEEE International Conference on Smart Data Services (SMDS)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Conference on Smart Data Services (SMDS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SMDS49396.2020.00011\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Smart Data Services (SMDS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SMDS49396.2020.00011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

用户流失预测是web服务行业的一个前沿研究领域,它是对虚拟世界中的用户进行管理并为改进相应的web服务提供反馈信息的关键。目前,大部分的相关工作都是设计一份问卷,收集用户的特征和感受的数据,然后通过寻找相关性来建立一个通用的模型。然而,这种方法需要耗费大量的时间和人力,而且大多数web服务只能获取用户行为的日志,无法访问用户的特征数据。因此,仅凭行为数据进行用户流失预测,并从用户的行为数据中获取用户的潜在感受,以提高用户流失预测的准确性是一个很大的挑战。本文提出了一种新的潜在情感感知RNN模型LaFee,该模型仅使用行为数据来解决用户流失预测问题。潜在的感受,证明是满意和愿望,可以通过中间变量的训练LaFee估计。我们还在真实数据集上设计了实验,结果表明我们的方法优于基线。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Latent Feelings-aware RNN Model for User Churn Prediction with only Behaviour data
User Churn Prediction is a cutting-edge research area in the web service industry, it is the key for managing the user in the virtual world and provide feedback information for improving the corresponding web service. At present, most of the relevant work is to design a questionnaire to collect data of users' characteristics and feelings and then develop a general model by finding relevance. However, that kind of methods requires quite a time and manpower, and most web services can only obtain logs of users' behaviours and have no access to users' feature data. Therefore, it is a big challenge to conduct user churn prediction with only behavior data and get users' latent feelings from their action data in order to improve the accuracy of churn prediction. In this paper, a novel Latent Feelings-aware RNN model, namely LaFee, has been proposed to solve the user churn prediction problem by using only behaviour data. The latent feelings, proven to be satisfaction and aspiration, can be estimated through the intermediate variable of the trained LaFee. We also designed experiments on a real dataset and the results show that our methods outperform the baselines.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
S3QLRDF: Property Table Partitioning Scheme for Distributed SPARQL Querying of large-scale RDF data BC-Sketch: A Simple Reversible Sketch for Detecting Network Anomalies 2020 IEEE International Conference on Smart Data Services (SMDS) SMDS 2020 Scalable and Hybrid Ensemble-Based Causality Discovery Stargazer: A Deep Learning Approach for Estimating the Performance of Edge- Based Clustering Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1