薄板成形过程的约束模型预测控制

Hao Wang, S. Duncan
{"title":"薄板成形过程的约束模型预测控制","authors":"Hao Wang, S. Duncan","doi":"10.1109/CCA.2011.6044466","DOIUrl":null,"url":null,"abstract":"Model Predictive Control (MPC) has been applied in a range of industrial applications, and part of its popularity is that it can cope with a constrained system, providing an optimal control for a certain performance index. Incremental Sheet Forming (ISF) is an emerging progressive sheet metal forming technology where the deformation occurs locally. It is best suited to customised and one-off or short-run production, because ISF does not require costly individual tools, dies or punches to be manufactured. The geometrical accuracy of the shape made by ISF, is however, lower than the conventional processes, such as stamping. We address this issue by using a constrained model predictive control scheme to optimise the tool trajectory of this process. A simplified linear forming process model is first derived, which is modified then to handle the “tool contact” issue and after that a full MPC formulation is established. Two types of shapes are produced on an experimental rig, and the experimental results show that the final geometrical errors can be reduced compared to a standard contour following approach.","PeriodicalId":208713,"journal":{"name":"2011 IEEE International Conference on Control Applications (CCA)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Constrained model predictive control of an incremental sheet forming process\",\"authors\":\"Hao Wang, S. Duncan\",\"doi\":\"10.1109/CCA.2011.6044466\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Model Predictive Control (MPC) has been applied in a range of industrial applications, and part of its popularity is that it can cope with a constrained system, providing an optimal control for a certain performance index. Incremental Sheet Forming (ISF) is an emerging progressive sheet metal forming technology where the deformation occurs locally. It is best suited to customised and one-off or short-run production, because ISF does not require costly individual tools, dies or punches to be manufactured. The geometrical accuracy of the shape made by ISF, is however, lower than the conventional processes, such as stamping. We address this issue by using a constrained model predictive control scheme to optimise the tool trajectory of this process. A simplified linear forming process model is first derived, which is modified then to handle the “tool contact” issue and after that a full MPC formulation is established. Two types of shapes are produced on an experimental rig, and the experimental results show that the final geometrical errors can be reduced compared to a standard contour following approach.\",\"PeriodicalId\":208713,\"journal\":{\"name\":\"2011 IEEE International Conference on Control Applications (CCA)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE International Conference on Control Applications (CCA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCA.2011.6044466\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE International Conference on Control Applications (CCA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCA.2011.6044466","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

摘要

模型预测控制(MPC)已经在一系列工业应用中得到了应用,其受欢迎的部分原因是它可以处理受约束的系统,为特定的性能指标提供最优控制。渐进式板料成形(ISF)是一种新兴的板料渐进成形技术,其变形发生在局部。它最适合定制和一次性或短期生产,因为ISF不需要昂贵的单独工具,模具或冲床来制造。然而,ISF制造的形状的几何精度低于传统工艺,如冲压。我们通过使用约束模型预测控制方案来优化该过程的刀具轨迹来解决这个问题。首先推导了一个简化的线性成形过程模型,然后对其进行了修正,以处理“刀具接触”问题,然后建立了完整的MPC公式。在实验台上生成了两种类型的轮廓,实验结果表明,与标准轮廓跟踪方法相比,最终的几何误差可以减小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Constrained model predictive control of an incremental sheet forming process
Model Predictive Control (MPC) has been applied in a range of industrial applications, and part of its popularity is that it can cope with a constrained system, providing an optimal control for a certain performance index. Incremental Sheet Forming (ISF) is an emerging progressive sheet metal forming technology where the deformation occurs locally. It is best suited to customised and one-off or short-run production, because ISF does not require costly individual tools, dies or punches to be manufactured. The geometrical accuracy of the shape made by ISF, is however, lower than the conventional processes, such as stamping. We address this issue by using a constrained model predictive control scheme to optimise the tool trajectory of this process. A simplified linear forming process model is first derived, which is modified then to handle the “tool contact” issue and after that a full MPC formulation is established. Two types of shapes are produced on an experimental rig, and the experimental results show that the final geometrical errors can be reduced compared to a standard contour following approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Suppression of general decoherence in arbitrary n-level atom in Ξ-configuration under a bang-bang control Interval observer for Chlorella vulgaris culture in a photobioreactor Miniaturizing the spherical sundial: A hemispherical sensor for orientation and positioning with respect to point sources of light Robust gain-scheduled control of dc-dc converters: An LMI approach Slip measurement and vehicle control for leg/wheel mobile robots using caster type odometers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1