{"title":"无相毫米波波束跟踪的机器学习预测","authors":"B. Domae, Veljko Boljanovic, Rui Li, D. Cabric","doi":"10.1109/spawc51304.2022.9833935","DOIUrl":null,"url":null,"abstract":"Future wireless networks may operate at millimeter-wave (mmW) and sub-terahertz (sub-THz) frequencies to enable high data rate requirements. While large antenna arrays are critical for reliable communications at mmW and sub-THz bands, these antenna arrays would also mandate efficient and scalable initial beam alignment and link maintenance algorithms for mobile devices. Low-power phased-array architectures and phaseless power measurements due to high frequency oscillator phase noise pose additional challenges for practical beam tracking algorithms. Traditional beam tracking protocols require exhaustive sweeps of all possible beam directions and scale poorly with high mobility and large arrays. Compressive sensing and machine learning designs have been proposed to improve measurement scaling with array size but commonly degrade under hardware impairments or require raw samples respectively. In this work, we introduce a novel long short-term memory (LSTM) network assisted beam tracking and prediction algorithm utilizing only phase-less measurements from fixed compressive codebooks. We demonstrate comparable beam alignment accuracy to state-of-the-art phase-less beam alignment algorithms, while reducing the average number of required measurements over time.","PeriodicalId":423807,"journal":{"name":"2022 IEEE 23rd International Workshop on Signal Processing Advances in Wireless Communication (SPAWC)","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Machine Learning Prediction for Phase-less Millimeter-Wave Beam Tracking\",\"authors\":\"B. Domae, Veljko Boljanovic, Rui Li, D. Cabric\",\"doi\":\"10.1109/spawc51304.2022.9833935\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Future wireless networks may operate at millimeter-wave (mmW) and sub-terahertz (sub-THz) frequencies to enable high data rate requirements. While large antenna arrays are critical for reliable communications at mmW and sub-THz bands, these antenna arrays would also mandate efficient and scalable initial beam alignment and link maintenance algorithms for mobile devices. Low-power phased-array architectures and phaseless power measurements due to high frequency oscillator phase noise pose additional challenges for practical beam tracking algorithms. Traditional beam tracking protocols require exhaustive sweeps of all possible beam directions and scale poorly with high mobility and large arrays. Compressive sensing and machine learning designs have been proposed to improve measurement scaling with array size but commonly degrade under hardware impairments or require raw samples respectively. In this work, we introduce a novel long short-term memory (LSTM) network assisted beam tracking and prediction algorithm utilizing only phase-less measurements from fixed compressive codebooks. We demonstrate comparable beam alignment accuracy to state-of-the-art phase-less beam alignment algorithms, while reducing the average number of required measurements over time.\",\"PeriodicalId\":423807,\"journal\":{\"name\":\"2022 IEEE 23rd International Workshop on Signal Processing Advances in Wireless Communication (SPAWC)\",\"volume\":\"50 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 23rd International Workshop on Signal Processing Advances in Wireless Communication (SPAWC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/spawc51304.2022.9833935\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 23rd International Workshop on Signal Processing Advances in Wireless Communication (SPAWC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/spawc51304.2022.9833935","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Machine Learning Prediction for Phase-less Millimeter-Wave Beam Tracking
Future wireless networks may operate at millimeter-wave (mmW) and sub-terahertz (sub-THz) frequencies to enable high data rate requirements. While large antenna arrays are critical for reliable communications at mmW and sub-THz bands, these antenna arrays would also mandate efficient and scalable initial beam alignment and link maintenance algorithms for mobile devices. Low-power phased-array architectures and phaseless power measurements due to high frequency oscillator phase noise pose additional challenges for practical beam tracking algorithms. Traditional beam tracking protocols require exhaustive sweeps of all possible beam directions and scale poorly with high mobility and large arrays. Compressive sensing and machine learning designs have been proposed to improve measurement scaling with array size but commonly degrade under hardware impairments or require raw samples respectively. In this work, we introduce a novel long short-term memory (LSTM) network assisted beam tracking and prediction algorithm utilizing only phase-less measurements from fixed compressive codebooks. We demonstrate comparable beam alignment accuracy to state-of-the-art phase-less beam alignment algorithms, while reducing the average number of required measurements over time.