无线局域网超态nzim天线阵列的设计

A. Khairy, Islam Mohammed, M. Ahmed, M. M. Elsherbini
{"title":"无线局域网超态nzim天线阵列的设计","authors":"A. Khairy, Islam Mohammed, M. Ahmed, M. M. Elsherbini","doi":"10.38032/jea.2022.03.001","DOIUrl":null,"url":null,"abstract":"With the development of telecommunications and its applications, the design of compact antennas with high performance has become a great necessity. Among the important requirements is a high gain. In this article, a microstrip patch antenna using near zero-index metamaterial (NZIM) is proposed. This prototype is designed with the designing parameters of a rectangular microstrip patch antenna. The substrate material is FR-4. Simulation results show that this antenna operates at 5.8 GHz for a wireless local area network (WLAN). The proposed single antenna element achieves side-lobe suppression better than -13 dB. The 4×4 proposed antenna array is designed using 16 single elements and a T-shaped power divider to split power for each element. By covering a single-layer NZIM coating with a 4×4 array over a microstrip antenna, a gain enhancement of 14 dB is achieved in comparison with the single element. Over the operating band, the antenna prototype demonstrates steady radiation patterns. These characteristics are in good agreement with the simulations, rendering the antenna a good candidate for 5G applications. These antennas are designed, optimized, and simulated using CSTMWS2020.","PeriodicalId":292407,"journal":{"name":"Journal of Engineering Advancements","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The Design of a Superstate NZIM-Antenna Array for WLAN Application\",\"authors\":\"A. Khairy, Islam Mohammed, M. Ahmed, M. M. Elsherbini\",\"doi\":\"10.38032/jea.2022.03.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the development of telecommunications and its applications, the design of compact antennas with high performance has become a great necessity. Among the important requirements is a high gain. In this article, a microstrip patch antenna using near zero-index metamaterial (NZIM) is proposed. This prototype is designed with the designing parameters of a rectangular microstrip patch antenna. The substrate material is FR-4. Simulation results show that this antenna operates at 5.8 GHz for a wireless local area network (WLAN). The proposed single antenna element achieves side-lobe suppression better than -13 dB. The 4×4 proposed antenna array is designed using 16 single elements and a T-shaped power divider to split power for each element. By covering a single-layer NZIM coating with a 4×4 array over a microstrip antenna, a gain enhancement of 14 dB is achieved in comparison with the single element. Over the operating band, the antenna prototype demonstrates steady radiation patterns. These characteristics are in good agreement with the simulations, rendering the antenna a good candidate for 5G applications. These antennas are designed, optimized, and simulated using CSTMWS2020.\",\"PeriodicalId\":292407,\"journal\":{\"name\":\"Journal of Engineering Advancements\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Engineering Advancements\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.38032/jea.2022.03.001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Engineering Advancements","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.38032/jea.2022.03.001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

随着通信技术及其应用的发展,设计高性能的小型天线已成为一种迫切需要。其中一个重要的要求是高增益。本文提出了一种采用近零折射率超材料(NZIM)的微带贴片天线。本原型采用矩形微带贴片天线的设计参数进行设计。基材为FR-4。仿真结果表明,该天线工作频率为5.8 GHz,适用于无线局域网。所提出的单天线元件的旁瓣抑制效果优于-13 dB。4×4提出的天线阵列设计使用16个单元件和一个t形功率分配器来分割每个元件的功率。通过将4×4阵列覆盖在微带天线上的单层NZIM涂层上,与单个元件相比,获得了14 dB的增益增强。在工作频带上,天线原型显示出稳定的辐射模式。这些特性与仿真结果很好地吻合,使该天线成为5G应用的良好候选者。使用CSTMWS2020对这些天线进行了设计、优化和仿真。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The Design of a Superstate NZIM-Antenna Array for WLAN Application
With the development of telecommunications and its applications, the design of compact antennas with high performance has become a great necessity. Among the important requirements is a high gain. In this article, a microstrip patch antenna using near zero-index metamaterial (NZIM) is proposed. This prototype is designed with the designing parameters of a rectangular microstrip patch antenna. The substrate material is FR-4. Simulation results show that this antenna operates at 5.8 GHz for a wireless local area network (WLAN). The proposed single antenna element achieves side-lobe suppression better than -13 dB. The 4×4 proposed antenna array is designed using 16 single elements and a T-shaped power divider to split power for each element. By covering a single-layer NZIM coating with a 4×4 array over a microstrip antenna, a gain enhancement of 14 dB is achieved in comparison with the single element. Over the operating band, the antenna prototype demonstrates steady radiation patterns. These characteristics are in good agreement with the simulations, rendering the antenna a good candidate for 5G applications. These antennas are designed, optimized, and simulated using CSTMWS2020.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Depression Intensity Identification using Transformer Ensemble Technique for the Resource-constrained Bengali Language Numerical Analysis of Laminar Natural Convection Inside Enclosed Squared and Trapezoidal Cavities at Different Inclination Angles Design and Performance Analysis of Defected Ground Slotted Patch Antenna for Sub-6 GHz 5G Applications Development of a Weighted Productivity Model for a Food Processing Industry Optimal Tuning of a LQR Controlled Active Quarter Car System Using Global Best Inertia Weight Modified Particle Swarm Optimization Algorithm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1