强激光场中H2+光解的精确处理

A. Kondorskiy, H. Nakamura, L. Presnyakov
{"title":"强激光场中H2+光解的精确处理","authors":"A. Kondorskiy, H. Nakamura, L. Presnyakov","doi":"10.1117/12.536875","DOIUrl":null,"url":null,"abstract":"The photodissociation of H2+ by an intense laser pulse is investigated by solving the close coupled equations without discretezation. The photodissociation spectra are calculated under the condition mimicking the experiment done by Sanding et al. and fairly good agreement obtained. The influence of the uncertainty in the relative phases of initial states is found to lead to somewhat of smoothing of the spectra depending on the laser intensity and pulse width. It is also found that Raman type transitions via intermediate dissociation continuum play an important role in determining photodissociation spectra. This effect leads to population increase of lower vibrational states and deforms spectral profile. The dissociation from the lower vibrational states due to bond softening cannot be good enough. The calculated results of the photodissociation spectra are presented in three-dimensional plot by introducing the field intensity as an extra axis. This is helpful for clearly understanding the dependence of photodissociation dynamics on the laser parameters.","PeriodicalId":340981,"journal":{"name":"European Conference on Laser Interaction with Matter","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Accurate treatment of photodissociation of H2+ in strong laser field\",\"authors\":\"A. Kondorskiy, H. Nakamura, L. Presnyakov\",\"doi\":\"10.1117/12.536875\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The photodissociation of H2+ by an intense laser pulse is investigated by solving the close coupled equations without discretezation. The photodissociation spectra are calculated under the condition mimicking the experiment done by Sanding et al. and fairly good agreement obtained. The influence of the uncertainty in the relative phases of initial states is found to lead to somewhat of smoothing of the spectra depending on the laser intensity and pulse width. It is also found that Raman type transitions via intermediate dissociation continuum play an important role in determining photodissociation spectra. This effect leads to population increase of lower vibrational states and deforms spectral profile. The dissociation from the lower vibrational states due to bond softening cannot be good enough. The calculated results of the photodissociation spectra are presented in three-dimensional plot by introducing the field intensity as an extra axis. This is helpful for clearly understanding the dependence of photodissociation dynamics on the laser parameters.\",\"PeriodicalId\":340981,\"journal\":{\"name\":\"European Conference on Laser Interaction with Matter\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Conference on Laser Interaction with Matter\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.536875\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Conference on Laser Interaction with Matter","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.536875","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

通过求解无离散的紧密耦合方程,研究了强激光脉冲对H2+的光解作用。在模拟Sanding等人的实验条件下计算了光解光谱,得到了较好的一致性。发现初始态相对相位的不确定度的影响会导致光谱随激光强度和脉冲宽度的变化而出现一定程度的平滑。通过中间解离连续体的拉曼型跃迁在确定光解离光谱中起重要作用。这种效应导致低振动态的数量增加,使光谱轮廓变形。由于键的软化,较低振动态的解离不够好。通过引入场强作为附加轴,将光解光谱的计算结果绘制成三维图。这有助于清楚地理解光解动力学对激光参数的依赖关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Accurate treatment of photodissociation of H2+ in strong laser field
The photodissociation of H2+ by an intense laser pulse is investigated by solving the close coupled equations without discretezation. The photodissociation spectra are calculated under the condition mimicking the experiment done by Sanding et al. and fairly good agreement obtained. The influence of the uncertainty in the relative phases of initial states is found to lead to somewhat of smoothing of the spectra depending on the laser intensity and pulse width. It is also found that Raman type transitions via intermediate dissociation continuum play an important role in determining photodissociation spectra. This effect leads to population increase of lower vibrational states and deforms spectral profile. The dissociation from the lower vibrational states due to bond softening cannot be good enough. The calculated results of the photodissociation spectra are presented in three-dimensional plot by introducing the field intensity as an extra axis. This is helpful for clearly understanding the dependence of photodissociation dynamics on the laser parameters.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Theoretical models of hot dense plasmas for laser and heavy ion target designs Spectrum linewidth of SBS in collisionless plasma with two species of ions Filling of glass microshells with heavy gases by radiation-simulated diffusion Recent theoretical and experimental results on inertial fusion energy physics Theoretical-numerical research of fast ignition in nondegenerate plasma at inertial fusion
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1