基于支持向量回归的熔体指数预测

Long Ge, Jian Shi, Peiyi Zhu
{"title":"基于支持向量回归的熔体指数预测","authors":"Long Ge, Jian Shi, Peiyi Zhu","doi":"10.1109/ICCAIS.2016.7822436","DOIUrl":null,"url":null,"abstract":"Melt index is considered one of the most important variables in determining chemical product quality and thus reliable prediction of melt index (MI) is essential in practical propylene polymerization processes. In this paper, a fuzzy support vector regression (FSVR) based model for propylene polymerization process is developed to predict the MI of polypropylene from other easily measured process variables. Support vector data description (SVDD) is introduced in this model as a novel fuzzy membership function and to reducing the effect of outliers and noises. A detailed comparison between the standard SVR and SVDD-FSVR models is carried out on a real plant. The research results have confirmed the effectiveness of the presented method.","PeriodicalId":407031,"journal":{"name":"2016 International Conference on Control, Automation and Information Sciences (ICCAIS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Melt index prediction by support vector regression\",\"authors\":\"Long Ge, Jian Shi, Peiyi Zhu\",\"doi\":\"10.1109/ICCAIS.2016.7822436\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Melt index is considered one of the most important variables in determining chemical product quality and thus reliable prediction of melt index (MI) is essential in practical propylene polymerization processes. In this paper, a fuzzy support vector regression (FSVR) based model for propylene polymerization process is developed to predict the MI of polypropylene from other easily measured process variables. Support vector data description (SVDD) is introduced in this model as a novel fuzzy membership function and to reducing the effect of outliers and noises. A detailed comparison between the standard SVR and SVDD-FSVR models is carried out on a real plant. The research results have confirmed the effectiveness of the presented method.\",\"PeriodicalId\":407031,\"journal\":{\"name\":\"2016 International Conference on Control, Automation and Information Sciences (ICCAIS)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 International Conference on Control, Automation and Information Sciences (ICCAIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCAIS.2016.7822436\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Conference on Control, Automation and Information Sciences (ICCAIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCAIS.2016.7822436","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

熔体指数被认为是决定化工产品质量的重要变量之一,因此可靠的熔体指数预测在实际丙烯聚合过程中是必不可少的。本文建立了一个基于模糊支持向量回归(FSVR)的丙烯聚合过程模型,从其他容易测量的过程变量中预测聚丙烯的MI。该模型引入了支持向量数据描述(SVDD)作为一种新的模糊隶属函数,以减少异常值和噪声的影响。在实际装置上对标准SVR模型和SVDD-FSVR模型进行了详细的比较。研究结果验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Melt index prediction by support vector regression
Melt index is considered one of the most important variables in determining chemical product quality and thus reliable prediction of melt index (MI) is essential in practical propylene polymerization processes. In this paper, a fuzzy support vector regression (FSVR) based model for propylene polymerization process is developed to predict the MI of polypropylene from other easily measured process variables. Support vector data description (SVDD) is introduced in this model as a novel fuzzy membership function and to reducing the effect of outliers and noises. A detailed comparison between the standard SVR and SVDD-FSVR models is carried out on a real plant. The research results have confirmed the effectiveness of the presented method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multiple model box-particle cardinality balanced multi-target multi-Bernoulli filter for multiple maneuvering targets tracking A new modelling and identification approach for guaranteed inclusion of a voltage source inverter's output voltages Multi region segmentation algorithm based on edge preserving for molten pool image Parameter weighting for multi-dimensional fuzzy inference systems Conditional marked point process-based crowd counting in sparsely and moderately crowded scenes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1