骷髅:人与物体交互的细粒度姿势合成

Qixuan Sun, Nanxi Chen, Ruipeng Zhang, Jiamao Li, Xiaolin Zhang
{"title":"骷髅:人与物体交互的细粒度姿势合成","authors":"Qixuan Sun, Nanxi Chen, Ruipeng Zhang, Jiamao Li, Xiaolin Zhang","doi":"10.1145/3589572.3589579","DOIUrl":null,"url":null,"abstract":"Synthesizing Human-Object Interactions (HOI) is a challenging problem since the human body has a complex and versatile representation. Existing solutions can generate individual objects or faces very well but still face difficulty in generating realistic human bodies and their interaction with multiple objects. In this work, we focus on synthesizing human poses based on HOI descriptive triplets and introduce a novel perspective that decomposes every action between humans and objects into sub-actions of human body parts to generate body poses in a fine-grained way. We propose SkeletonGAN, a conditional generative adversarial model to perform a body-parts-level control over the interaction between humans and objects. SkeletonGAN is trained and evaluated using the HICO-DET dataset, which is a knowledge base consisting of complex interaction poses of various human-object actions in realistic scenarios. We show through qualitative and quantitative evaluations that this model is capable of generating diverse and plausible poses consistent with the given semantic features, and especially our model can also predict the relative position of the object with the body pose. We also explore synthesizing composite poses that include co-occurring human actions, indicating that the model can learn multimodal relationships between human poses and the given conditional semantic features.","PeriodicalId":296325,"journal":{"name":"Proceedings of the 2023 6th International Conference on Machine Vision and Applications","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SkeletonGAN: Fine-Grained Pose Synthesis of Human-Object Interactions\",\"authors\":\"Qixuan Sun, Nanxi Chen, Ruipeng Zhang, Jiamao Li, Xiaolin Zhang\",\"doi\":\"10.1145/3589572.3589579\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Synthesizing Human-Object Interactions (HOI) is a challenging problem since the human body has a complex and versatile representation. Existing solutions can generate individual objects or faces very well but still face difficulty in generating realistic human bodies and their interaction with multiple objects. In this work, we focus on synthesizing human poses based on HOI descriptive triplets and introduce a novel perspective that decomposes every action between humans and objects into sub-actions of human body parts to generate body poses in a fine-grained way. We propose SkeletonGAN, a conditional generative adversarial model to perform a body-parts-level control over the interaction between humans and objects. SkeletonGAN is trained and evaluated using the HICO-DET dataset, which is a knowledge base consisting of complex interaction poses of various human-object actions in realistic scenarios. We show through qualitative and quantitative evaluations that this model is capable of generating diverse and plausible poses consistent with the given semantic features, and especially our model can also predict the relative position of the object with the body pose. We also explore synthesizing composite poses that include co-occurring human actions, indicating that the model can learn multimodal relationships between human poses and the given conditional semantic features.\",\"PeriodicalId\":296325,\"journal\":{\"name\":\"Proceedings of the 2023 6th International Conference on Machine Vision and Applications\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2023 6th International Conference on Machine Vision and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3589572.3589579\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2023 6th International Conference on Machine Vision and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3589572.3589579","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

由于人体具有复杂多变的表征,人-物交互的合成是一个具有挑战性的问题。现有的解决方案可以很好地生成单个物体或人脸,但在生成逼真的人体及其与多个物体的交互方面仍然面临困难。在这项工作中,我们专注于基于HOI描述三联体的人体姿势合成,并引入了一种新的视角,将人与物体之间的每个动作分解为人体部位的子动作,以细粒度的方式生成身体姿势。我们提出了一个条件生成对抗模型,用于对人与物体之间的交互进行身体-部位级控制。使用HICO-DET数据集对骷髅进行训练和评估,该数据集是一个知识库,由现实场景中各种人类物体动作的复杂交互姿势组成。我们通过定性和定量评估表明,该模型能够生成与给定语义特征一致的多种合理姿势,特别是我们的模型还可以预测物体与身体姿势的相对位置。我们还探索了包括共同发生的人类动作的合成复合姿势,表明该模型可以学习人类姿势和给定条件语义特征之间的多模态关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
SkeletonGAN: Fine-Grained Pose Synthesis of Human-Object Interactions
Synthesizing Human-Object Interactions (HOI) is a challenging problem since the human body has a complex and versatile representation. Existing solutions can generate individual objects or faces very well but still face difficulty in generating realistic human bodies and their interaction with multiple objects. In this work, we focus on synthesizing human poses based on HOI descriptive triplets and introduce a novel perspective that decomposes every action between humans and objects into sub-actions of human body parts to generate body poses in a fine-grained way. We propose SkeletonGAN, a conditional generative adversarial model to perform a body-parts-level control over the interaction between humans and objects. SkeletonGAN is trained and evaluated using the HICO-DET dataset, which is a knowledge base consisting of complex interaction poses of various human-object actions in realistic scenarios. We show through qualitative and quantitative evaluations that this model is capable of generating diverse and plausible poses consistent with the given semantic features, and especially our model can also predict the relative position of the object with the body pose. We also explore synthesizing composite poses that include co-occurring human actions, indicating that the model can learn multimodal relationships between human poses and the given conditional semantic features.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Object-Based Vehicle Color Recognition in Uncontrolled Environment Detection of Fibrillatory Episodes in Atrial Fibrillation Rhythms via Topology-informed Machine Learning Structure-Enhanced Translation from PET to CT Modality with Paired GANs Multi-temporal process quality prediction based on graph neural network On-Demand Multiclass Imaging for Sample Scarcity in Industrial Environments
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1