一种高度非线性导弹面向控制的模糊多模型辨识

S. V. Hashemi, A. Mehrabian, J. Roshanian
{"title":"一种高度非线性导弹面向控制的模糊多模型辨识","authors":"S. V. Hashemi, A. Mehrabian, J. Roshanian","doi":"10.1109/IS.2006.348440","DOIUrl":null,"url":null,"abstract":"A novel fuzzy identification algorithm is introduced that is based on fuzzy interpolation of locally linear models obtained from a nonlinear system. Fuzzy clustering is employed to automatically decompose operating envelope of a nonlinear system into optimal number of operating partitions by means of optimal number of rules in a Tagaki-Sugeno fuzzy set direct realistic extension to flight control is introduced and applied on a tail-controlled skid-to-turn missile. The fuzzy model is evaluated using simulations of the complete nonlinear model. Simulation studies are reported to demonstrate merits of fuzzy systems in handling the demanding nonlinear modeling task","PeriodicalId":116809,"journal":{"name":"2006 3rd International IEEE Conference Intelligent Systems","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Control-Oriented Fuzzy Multi-Model Identification of a Highly Nonlinear Missile\",\"authors\":\"S. V. Hashemi, A. Mehrabian, J. Roshanian\",\"doi\":\"10.1109/IS.2006.348440\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A novel fuzzy identification algorithm is introduced that is based on fuzzy interpolation of locally linear models obtained from a nonlinear system. Fuzzy clustering is employed to automatically decompose operating envelope of a nonlinear system into optimal number of operating partitions by means of optimal number of rules in a Tagaki-Sugeno fuzzy set direct realistic extension to flight control is introduced and applied on a tail-controlled skid-to-turn missile. The fuzzy model is evaluated using simulations of the complete nonlinear model. Simulation studies are reported to demonstrate merits of fuzzy systems in handling the demanding nonlinear modeling task\",\"PeriodicalId\":116809,\"journal\":{\"name\":\"2006 3rd International IEEE Conference Intelligent Systems\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 3rd International IEEE Conference Intelligent Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IS.2006.348440\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 3rd International IEEE Conference Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IS.2006.348440","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

提出了一种基于非线性系统局部线性模型模糊插值的模糊辨识算法。采用模糊聚类方法,利用Tagaki-Sugeno模糊集的最优规则数,将非线性系统的运行包络自动分解为最优运行分区数,并将其应用于尾翼控制的滑转导弹。通过对完全非线性模型的仿真,对模糊模型进行了评价。仿真研究证明了模糊系统在处理复杂的非线性建模任务方面的优点
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Control-Oriented Fuzzy Multi-Model Identification of a Highly Nonlinear Missile
A novel fuzzy identification algorithm is introduced that is based on fuzzy interpolation of locally linear models obtained from a nonlinear system. Fuzzy clustering is employed to automatically decompose operating envelope of a nonlinear system into optimal number of operating partitions by means of optimal number of rules in a Tagaki-Sugeno fuzzy set direct realistic extension to flight control is introduced and applied on a tail-controlled skid-to-turn missile. The fuzzy model is evaluated using simulations of the complete nonlinear model. Simulation studies are reported to demonstrate merits of fuzzy systems in handling the demanding nonlinear modeling task
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Neurofuzzy Adaptive Kalman Filter Artificial Intelligence Technique for Gene Expression Profiling of Urinary Bladder Cancer Evolutionary Support Vector Machines for Diabetes Mellitus Diagnosis IGUANA: Individuation of Global Unsafe ANomalies and Alarm activation Smart Data Analysis Services
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1