p75NTR作为分子记忆开关

Shen Ning, Mehdi Jorfi
{"title":"p75NTR作为分子记忆开关","authors":"Shen Ning, Mehdi Jorfi","doi":"10.20944/preprints201912.0333.v1","DOIUrl":null,"url":null,"abstract":"In recent years, many molecular and environmental factors have been studied to understand how synaptic plasticity is modulated. Sleep, as an evolutionary conserved biological function, has shown to be a critical player for the consolidation and filtering of synaptic circuitry underlying memory traces. Although sleep disturbances do not alter normal memory consolidation, they may reflect fundamental circuit malfunctions that can play a significant role in exacerbating diseases, such as autism and Alzheimer’s disease. Very recently, scientists sought to answer part of this enigma and they identified p75 neurotrophic receptor (p75NTR) as a critical player in mediating impairments in hippocampal-dependent associative plasticity upon sleep deprivation. This paper will review the role of the p75NTR, critically discuss the impact and implications of this research as the bridge for sleep research and neurological diseases.","PeriodicalId":298664,"journal":{"name":"arXiv: Neurons and Cognition","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"p75NTR as a Molecular Memory Switch\",\"authors\":\"Shen Ning, Mehdi Jorfi\",\"doi\":\"10.20944/preprints201912.0333.v1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years, many molecular and environmental factors have been studied to understand how synaptic plasticity is modulated. Sleep, as an evolutionary conserved biological function, has shown to be a critical player for the consolidation and filtering of synaptic circuitry underlying memory traces. Although sleep disturbances do not alter normal memory consolidation, they may reflect fundamental circuit malfunctions that can play a significant role in exacerbating diseases, such as autism and Alzheimer’s disease. Very recently, scientists sought to answer part of this enigma and they identified p75 neurotrophic receptor (p75NTR) as a critical player in mediating impairments in hippocampal-dependent associative plasticity upon sleep deprivation. This paper will review the role of the p75NTR, critically discuss the impact and implications of this research as the bridge for sleep research and neurological diseases.\",\"PeriodicalId\":298664,\"journal\":{\"name\":\"arXiv: Neurons and Cognition\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Neurons and Cognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.20944/preprints201912.0333.v1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Neurons and Cognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20944/preprints201912.0333.v1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

近年来,人们对许多分子和环境因素进行了研究,以了解突触可塑性是如何调节的。睡眠作为一种进化保守的生物功能,已被证明是巩固和过滤记忆痕迹下突触电路的关键角色。尽管睡眠障碍不会改变正常的记忆巩固,但它们可能反映出基本的神经回路故障,而这种故障可能在加剧自闭症和阿尔茨海默病等疾病中发挥重要作用。最近,科学家们试图回答这个谜题的一部分,他们发现p75神经营养受体(p75NTR)在调节睡眠剥夺时海马依赖性联想可塑性的损伤中起着关键作用。本文将回顾p75NTR的作用,批判性地讨论该研究作为睡眠研究和神经系统疾病的桥梁的影响和意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
p75NTR as a Molecular Memory Switch
In recent years, many molecular and environmental factors have been studied to understand how synaptic plasticity is modulated. Sleep, as an evolutionary conserved biological function, has shown to be a critical player for the consolidation and filtering of synaptic circuitry underlying memory traces. Although sleep disturbances do not alter normal memory consolidation, they may reflect fundamental circuit malfunctions that can play a significant role in exacerbating diseases, such as autism and Alzheimer’s disease. Very recently, scientists sought to answer part of this enigma and they identified p75 neurotrophic receptor (p75NTR) as a critical player in mediating impairments in hippocampal-dependent associative plasticity upon sleep deprivation. This paper will review the role of the p75NTR, critically discuss the impact and implications of this research as the bridge for sleep research and neurological diseases.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Phase-amplitude coupling in neuronal oscillator networks Quality of internal representation shapes learning performance in feedback neural networks Generalisation of neuronal excitability allows for the identification of an excitability change parameter that links to an experimentally measurable value Short term memory by transient oscillatory dynamics in recurrent neural networks Predicting brain evoked response to external stimuli from temporal correlations of spontaneous activity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1