基于太赫兹激光的对峙成像系统

K. Linden, W. Neal, J. Waldman, A. Gatesman, A. Danylov
{"title":"基于太赫兹激光的对峙成像系统","authors":"K. Linden, W. Neal, J. Waldman, A. Gatesman, A. Danylov","doi":"10.1109/AIPR.2005.42","DOIUrl":null,"url":null,"abstract":"Definition and design of a terahertz standoff imaging system has been theoretically investigated. Utilizing terahertz quantum cascade lasers for transmitter and local oscillator, a detailed analysis of the expected performance of an active standoff imaging system based on coherent heterodyne detection has been carried out. Five atmospheric windows between 0.3 THz and 4.0 THz have been identified and quantified by carrying out laboratory measurements of atmospheric transmission as a function of relative humidity. Using the approximate center frequency of each of these windows, detailed calculations of expected system performance vs target distance, pixel resolution, and relative humidity were carried out. It is shown that with 1.5 THz laser radiation, a 10m standoff distance, 1 m times 1 m target area, and a 1cm times 1cm pixel resolution, a viable imaging system should be achievable. Performance calculations for various target distances, target pixel resolution, and laser frequency are presented","PeriodicalId":130204,"journal":{"name":"34th Applied Imagery and Pattern Recognition Workshop (AIPR'05)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":"{\"title\":\"Terahertz laser based standoff imaging system\",\"authors\":\"K. Linden, W. Neal, J. Waldman, A. Gatesman, A. Danylov\",\"doi\":\"10.1109/AIPR.2005.42\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Definition and design of a terahertz standoff imaging system has been theoretically investigated. Utilizing terahertz quantum cascade lasers for transmitter and local oscillator, a detailed analysis of the expected performance of an active standoff imaging system based on coherent heterodyne detection has been carried out. Five atmospheric windows between 0.3 THz and 4.0 THz have been identified and quantified by carrying out laboratory measurements of atmospheric transmission as a function of relative humidity. Using the approximate center frequency of each of these windows, detailed calculations of expected system performance vs target distance, pixel resolution, and relative humidity were carried out. It is shown that with 1.5 THz laser radiation, a 10m standoff distance, 1 m times 1 m target area, and a 1cm times 1cm pixel resolution, a viable imaging system should be achievable. Performance calculations for various target distances, target pixel resolution, and laser frequency are presented\",\"PeriodicalId\":130204,\"journal\":{\"name\":\"34th Applied Imagery and Pattern Recognition Workshop (AIPR'05)\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"24\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"34th Applied Imagery and Pattern Recognition Workshop (AIPR'05)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AIPR.2005.42\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"34th Applied Imagery and Pattern Recognition Workshop (AIPR'05)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AIPR.2005.42","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

摘要

对太赫兹对峙成像系统的定义和设计进行了理论研究。利用太赫兹量子级联激光器作为发射机和本振,详细分析了基于相干外差探测的有源距离成像系统的预期性能。通过对相对湿度的大气传输函数进行实验室测量,确定并量化了在0.3太赫兹至4.0太赫兹之间的五个大气窗口。利用每个窗口的近似中心频率,详细计算了预期系统性能与目标距离、像素分辨率和相对湿度的关系。结果表明,在1.5太赫兹的激光辐射、10m的距离、1m × 1m的目标面积和1cm × 1cm的像素分辨率下,可以实现可行的成像系统。给出了不同目标距离、目标像素分辨率和激光频率下的性能计算
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Terahertz laser based standoff imaging system
Definition and design of a terahertz standoff imaging system has been theoretically investigated. Utilizing terahertz quantum cascade lasers for transmitter and local oscillator, a detailed analysis of the expected performance of an active standoff imaging system based on coherent heterodyne detection has been carried out. Five atmospheric windows between 0.3 THz and 4.0 THz have been identified and quantified by carrying out laboratory measurements of atmospheric transmission as a function of relative humidity. Using the approximate center frequency of each of these windows, detailed calculations of expected system performance vs target distance, pixel resolution, and relative humidity were carried out. It is shown that with 1.5 THz laser radiation, a 10m standoff distance, 1 m times 1 m target area, and a 1cm times 1cm pixel resolution, a viable imaging system should be achievable. Performance calculations for various target distances, target pixel resolution, and laser frequency are presented
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Adaptive confidence level assignment to segmented human face regions for improved face recognition Segmentation approach and comparison to hyperspectral object detection algorithms A rate distortion method for waveform design in RF image formation Automatic inspection system using machine vision 3D scene modeling using sensor fusion with laser range finder and image sensor
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1