多asv分布式领队护航控制与二部时变编队跟踪

G. Wen
{"title":"多asv分布式领队护航控制与二部时变编队跟踪","authors":"G. Wen","doi":"10.1109/ICUS55513.2022.9986768","DOIUrl":null,"url":null,"abstract":"Distributed leader escort control and bipartite time-varying formation tracking (BTFT) problems are investigated respectively in this paper for a group of multiple autonomous surface vessels (ASVs) in the presence of a dynamic leader. To facilitate the analysis, it is assumed that the velocity and acceleration of the dynamic leader are bounded. By utilizing signed graphs, the following ASVs are divided into two groups to form different time-varying formation configurations. Then, two new kinds of controllers are designed respectively for completing the distributed leader escort control and BTFT tasks under the mild condition that only parts of the following ASVs can obtain the leader's information. By using tools from Lyapunov stability theory and sliding mode control theory, it is proven that the objectives of distributed leader escort control and BTFT can be respectively achieved asymptotically under the designed controllers with appropriate control gains. The results are further extended to the scenarios where the dynamics of following ASVs subject to uncertain Coriolis and centripetal matrix, and uncertain damping matrix. At last, some numerical simulations are presented to illustrate the validity of the designed controllers.","PeriodicalId":345773,"journal":{"name":"2022 IEEE International Conference on Unmanned Systems (ICUS)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On distributed leader escort control and bipartite time-varying formation tracking of multiple ASVs\",\"authors\":\"G. Wen\",\"doi\":\"10.1109/ICUS55513.2022.9986768\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Distributed leader escort control and bipartite time-varying formation tracking (BTFT) problems are investigated respectively in this paper for a group of multiple autonomous surface vessels (ASVs) in the presence of a dynamic leader. To facilitate the analysis, it is assumed that the velocity and acceleration of the dynamic leader are bounded. By utilizing signed graphs, the following ASVs are divided into two groups to form different time-varying formation configurations. Then, two new kinds of controllers are designed respectively for completing the distributed leader escort control and BTFT tasks under the mild condition that only parts of the following ASVs can obtain the leader's information. By using tools from Lyapunov stability theory and sliding mode control theory, it is proven that the objectives of distributed leader escort control and BTFT can be respectively achieved asymptotically under the designed controllers with appropriate control gains. The results are further extended to the scenarios where the dynamics of following ASVs subject to uncertain Coriolis and centripetal matrix, and uncertain damping matrix. At last, some numerical simulations are presented to illustrate the validity of the designed controllers.\",\"PeriodicalId\":345773,\"journal\":{\"name\":\"2022 IEEE International Conference on Unmanned Systems (ICUS)\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Conference on Unmanned Systems (ICUS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICUS55513.2022.9986768\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Unmanned Systems (ICUS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICUS55513.2022.9986768","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了一组多自主水面舰艇(asv)在动态leader存在下的分布式leader护航控制和二部时变编队跟踪问题。为了便于分析,假设动态先导体的速度和加速度是有界的。利用带符号图将以下asv分为两组,形成不同的时变队形。然后,设计了两种新的控制器,分别用于在只有以下asv的部分能够获得leader信息的温和条件下完成分布式leader护航控制和BTFT任务。利用李雅普诺夫稳定性理论和滑模控制理论的工具,证明了在给定适当的控制增益的情况下,分布式前导护送控制和BTFT的目标可以分别渐近实现。将结果进一步推广到不确定科里奥利矩阵和向心矩阵以及不确定阻尼矩阵下的后续自动驾驶汽车动力学情况。最后通过数值仿真验证了所设计控制器的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
On distributed leader escort control and bipartite time-varying formation tracking of multiple ASVs
Distributed leader escort control and bipartite time-varying formation tracking (BTFT) problems are investigated respectively in this paper for a group of multiple autonomous surface vessels (ASVs) in the presence of a dynamic leader. To facilitate the analysis, it is assumed that the velocity and acceleration of the dynamic leader are bounded. By utilizing signed graphs, the following ASVs are divided into two groups to form different time-varying formation configurations. Then, two new kinds of controllers are designed respectively for completing the distributed leader escort control and BTFT tasks under the mild condition that only parts of the following ASVs can obtain the leader's information. By using tools from Lyapunov stability theory and sliding mode control theory, it is proven that the objectives of distributed leader escort control and BTFT can be respectively achieved asymptotically under the designed controllers with appropriate control gains. The results are further extended to the scenarios where the dynamics of following ASVs subject to uncertain Coriolis and centripetal matrix, and uncertain damping matrix. At last, some numerical simulations are presented to illustrate the validity of the designed controllers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
UNF-SLAM: Unsupervised Feature Extraction Network for Visual-Laser Fusion SLAM Automatic Spinal Ultrasound Image Segmentation and Deployment for Real-time Spine Volumetric Reconstruction Track Matching Method of Sea Surface Targets Based on Improved Longest Common Subsequence Algorithm A dynamic event-triggered leader-following consensus algorithm for multi-AUVs system Adaptive Multi-feature Fusion Improved ECO-HC Image Tracking Algorithm Based on Confidence Judgement for UAV Reconnaissance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1