基于生成对抗网络的Android恶意软件检测数据增强

Yi-Ming Chen, Chun-Hsien Yang, Guo-Chung Chen
{"title":"基于生成对抗网络的Android恶意软件检测数据增强","authors":"Yi-Ming Chen, Chun-Hsien Yang, Guo-Chung Chen","doi":"10.1109/DSC49826.2021.9346277","DOIUrl":null,"url":null,"abstract":"In the field of mobile malware detection, the problem of sample imbalance often occurs in the dataset, making the classifier unable to learn features through sufficient data during the training process. This research used the generative adversarial networks (GAN). In this paper, features of malwares are transformed into image expressions, and data is generated from a small number of malicious families to balance and expand the original dataset. We also compare other data augmentation techniques to explore whether they are beneficial to identify a small number of malicious samples. Experiments show that both traditional techniques and GAN can improve the accuracy of classification, but GAN can more effectively improve the classification model to detect that the dataset originally has a small number of datasets and the recognition accuracy is lower. The experimental results show that in the different datasets of 4,000 data in Drebin and 20,000 data in AMD, the types with a relatively small number of samples are augmented by the GAN. Compared with before and after data augmentation, the difference in F1-score accuracy can reach 5%~20%.","PeriodicalId":184504,"journal":{"name":"2021 IEEE Conference on Dependable and Secure Computing (DSC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Using Generative Adversarial Networks for Data Augmentation in Android Malware Detection\",\"authors\":\"Yi-Ming Chen, Chun-Hsien Yang, Guo-Chung Chen\",\"doi\":\"10.1109/DSC49826.2021.9346277\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the field of mobile malware detection, the problem of sample imbalance often occurs in the dataset, making the classifier unable to learn features through sufficient data during the training process. This research used the generative adversarial networks (GAN). In this paper, features of malwares are transformed into image expressions, and data is generated from a small number of malicious families to balance and expand the original dataset. We also compare other data augmentation techniques to explore whether they are beneficial to identify a small number of malicious samples. Experiments show that both traditional techniques and GAN can improve the accuracy of classification, but GAN can more effectively improve the classification model to detect that the dataset originally has a small number of datasets and the recognition accuracy is lower. The experimental results show that in the different datasets of 4,000 data in Drebin and 20,000 data in AMD, the types with a relatively small number of samples are augmented by the GAN. Compared with before and after data augmentation, the difference in F1-score accuracy can reach 5%~20%.\",\"PeriodicalId\":184504,\"journal\":{\"name\":\"2021 IEEE Conference on Dependable and Secure Computing (DSC)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE Conference on Dependable and Secure Computing (DSC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DSC49826.2021.9346277\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Conference on Dependable and Secure Computing (DSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DSC49826.2021.9346277","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

在移动恶意软件检测领域,数据集中经常出现样本不平衡的问题,使得分类器在训练过程中无法通过足够的数据学习到特征。本研究使用了生成对抗网络(GAN)。本文将恶意软件的特征转化为图像表达式,并从少量恶意家族中生成数据,以平衡和扩展原始数据集。我们还比较了其他数据增强技术,以探索它们是否有利于识别少量恶意样本。实验表明,传统技术和GAN都可以提高分类的准确率,但GAN可以更有效地改进分类模型,以检测数据集原本数量较少且识别准确率较低的数据集。实验结果表明,在Drebin的4000个数据和AMD的20000个数据的不同数据集中,GAN增强了样本数量相对较少的类型。与数据增强前后相比,f1评分准确率的差异可达5%~20%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Using Generative Adversarial Networks for Data Augmentation in Android Malware Detection
In the field of mobile malware detection, the problem of sample imbalance often occurs in the dataset, making the classifier unable to learn features through sufficient data during the training process. This research used the generative adversarial networks (GAN). In this paper, features of malwares are transformed into image expressions, and data is generated from a small number of malicious families to balance and expand the original dataset. We also compare other data augmentation techniques to explore whether they are beneficial to identify a small number of malicious samples. Experiments show that both traditional techniques and GAN can improve the accuracy of classification, but GAN can more effectively improve the classification model to detect that the dataset originally has a small number of datasets and the recognition accuracy is lower. The experimental results show that in the different datasets of 4,000 data in Drebin and 20,000 data in AMD, the types with a relatively small number of samples are augmented by the GAN. Compared with before and after data augmentation, the difference in F1-score accuracy can reach 5%~20%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Provable Data Possession Protocol in Cloud Storage Systems with Fault Tolerance Arithmetic Coding for Floating-Point Numbers A Novel Dynamic Group Signature with Membership Privacy ExamChain: A Privacy-Preserving Onscreen Marking System based on Consortium Blockchain Designated Verifier Signature Transformation: A New Framework for One-Time Delegating Verifiability
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1