基于一维卷积神经网络信号融合的异步电动机故障诊断

Sakineh Pashaee, A. Ramezani, Mina Ekresh, Saeid Jorkesh
{"title":"基于一维卷积神经网络信号融合的异步电动机故障诊断","authors":"Sakineh Pashaee, A. Ramezani, Mina Ekresh, Saeid Jorkesh","doi":"10.1109/ICSPIS54653.2021.9729338","DOIUrl":null,"url":null,"abstract":"The detection and classification of induction motor faults using a one-dimensional convolutional neural network is discussed in this paper. A one-dimensional deep neural network is learned utilizing three-phase current and voltage signals from an induction motor system. The results of experiments show that the one-dimensional deep convolutional neural network method effectively diagnoses the induction motor conditions (Bearing fault, Rotor bar broken, short circuit stator winding 8% and 12.5 %).","PeriodicalId":286966,"journal":{"name":"2021 7th International Conference on Signal Processing and Intelligent Systems (ICSPIS)","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Fault Diagnosing Of An Induction Motor Based On Signal Fusion Using One-Dimensional Convolutional Neural Network\",\"authors\":\"Sakineh Pashaee, A. Ramezani, Mina Ekresh, Saeid Jorkesh\",\"doi\":\"10.1109/ICSPIS54653.2021.9729338\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The detection and classification of induction motor faults using a one-dimensional convolutional neural network is discussed in this paper. A one-dimensional deep neural network is learned utilizing three-phase current and voltage signals from an induction motor system. The results of experiments show that the one-dimensional deep convolutional neural network method effectively diagnoses the induction motor conditions (Bearing fault, Rotor bar broken, short circuit stator winding 8% and 12.5 %).\",\"PeriodicalId\":286966,\"journal\":{\"name\":\"2021 7th International Conference on Signal Processing and Intelligent Systems (ICSPIS)\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 7th International Conference on Signal Processing and Intelligent Systems (ICSPIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSPIS54653.2021.9729338\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 7th International Conference on Signal Processing and Intelligent Systems (ICSPIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSPIS54653.2021.9729338","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

讨论了基于一维卷积神经网络的异步电动机故障检测与分类问题。利用感应电机系统的三相电流和电压信号学习一维深度神经网络。实验结果表明,一维深度卷积神经网络方法能有效地诊断感应电机故障(轴承故障、转子断条、定子绕组短路占8%和12.5%)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fault Diagnosing Of An Induction Motor Based On Signal Fusion Using One-Dimensional Convolutional Neural Network
The detection and classification of induction motor faults using a one-dimensional convolutional neural network is discussed in this paper. A one-dimensional deep neural network is learned utilizing three-phase current and voltage signals from an induction motor system. The results of experiments show that the one-dimensional deep convolutional neural network method effectively diagnoses the induction motor conditions (Bearing fault, Rotor bar broken, short circuit stator winding 8% and 12.5 %).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Intelligent Fault Diagnosis of Rolling BearingBased on Deep Transfer Learning Using Time-Frequency Representation Wind Energy Potential Approximation with Various Metaheuristic Optimization Techniques Deployment Listening to Sounds of Silence for Audio replay attack detection Transcranial Magnetic Stimulation of Prefrontal Cortex Alters Functional Brain Network Architecture: Graph Theoretical Analysis Anomaly Detection and Resilience-Oriented Countermeasures against Cyberattacks in Smart Grids
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1