预成型纱法制备的两种定向层合C/C复合材料高温氧化性能评价

Takehiko Takada, Y. Kimura
{"title":"预成型纱法制备的两种定向层合C/C复合材料高温氧化性能评价","authors":"Takehiko Takada, Y. Kimura","doi":"10.1299/JSMEA1993.39.3_442","DOIUrl":null,"url":null,"abstract":"Oxidation kinetics of as-received and preheat-treated C/C composites fabricated by the preformed yarn method were investigated. The weight loss due to gasification was measured with oxidation time. In situ observation of microscopic morphological change due to oxidation was conducted using a laser microscope during heating in flowing air. Then, degraded inner and outer morphologies of C/C composites oxidized at various temperatures were examined through observation by SEM and measurement of pore distribution using a mercury porosimeter. As a result, degraded morphologies due to oxidation were extremely different depending on the oxidation temperature range. The inner structural changes became obvious as the oxidation temperature decreased. Therefore, the rate-determining process of the oxidation was changed from the surface chemical reaction to reactive gas diffusion across the boundary layer of a gaseous oxidation product as the oxidation temperature increased. The oxidation reactivity of C/C composites was related to metallic impurities such as iron and residual stress generated during fabrication.","PeriodicalId":143127,"journal":{"name":"JSME international journal. Series A, mechanics and material engineering","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluation of High-Temperature Oxidation Characteristics of Two Directionally Laminated C/C Composite Fabricated by the Preformed Yarn Method\",\"authors\":\"Takehiko Takada, Y. Kimura\",\"doi\":\"10.1299/JSMEA1993.39.3_442\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Oxidation kinetics of as-received and preheat-treated C/C composites fabricated by the preformed yarn method were investigated. The weight loss due to gasification was measured with oxidation time. In situ observation of microscopic morphological change due to oxidation was conducted using a laser microscope during heating in flowing air. Then, degraded inner and outer morphologies of C/C composites oxidized at various temperatures were examined through observation by SEM and measurement of pore distribution using a mercury porosimeter. As a result, degraded morphologies due to oxidation were extremely different depending on the oxidation temperature range. The inner structural changes became obvious as the oxidation temperature decreased. Therefore, the rate-determining process of the oxidation was changed from the surface chemical reaction to reactive gas diffusion across the boundary layer of a gaseous oxidation product as the oxidation temperature increased. The oxidation reactivity of C/C composites was related to metallic impurities such as iron and residual stress generated during fabrication.\",\"PeriodicalId\":143127,\"journal\":{\"name\":\"JSME international journal. Series A, mechanics and material engineering\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1996-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JSME international journal. Series A, mechanics and material engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1299/JSMEA1993.39.3_442\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JSME international journal. Series A, mechanics and material engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1299/JSMEA1993.39.3_442","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究了预成型纱法制备的C/C复合材料的氧化动力学。用氧化时间测定气化失重。利用激光显微镜原位观察了在流动空气中加热过程中氧化引起的微观形态变化。然后,通过扫描电镜观察和汞孔计测量孔隙分布,对不同温度下氧化后的C/C复合材料的内部和外部形貌进行了研究。因此,氧化引起的降解形貌在不同的氧化温度范围内差异极大。随着氧化温度的降低,内部结构变化明显。因此,随着氧化温度的升高,氧化的速率决定过程从表面化学反应转变为气态氧化产物边界层上的活性气体扩散。C/C复合材料的氧化反应活性与制备过程中产生的铁等金属杂质和残余应力有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Evaluation of High-Temperature Oxidation Characteristics of Two Directionally Laminated C/C Composite Fabricated by the Preformed Yarn Method
Oxidation kinetics of as-received and preheat-treated C/C composites fabricated by the preformed yarn method were investigated. The weight loss due to gasification was measured with oxidation time. In situ observation of microscopic morphological change due to oxidation was conducted using a laser microscope during heating in flowing air. Then, degraded inner and outer morphologies of C/C composites oxidized at various temperatures were examined through observation by SEM and measurement of pore distribution using a mercury porosimeter. As a result, degraded morphologies due to oxidation were extremely different depending on the oxidation temperature range. The inner structural changes became obvious as the oxidation temperature decreased. Therefore, the rate-determining process of the oxidation was changed from the surface chemical reaction to reactive gas diffusion across the boundary layer of a gaseous oxidation product as the oxidation temperature increased. The oxidation reactivity of C/C composites was related to metallic impurities such as iron and residual stress generated during fabrication.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Inverse analysis related to stress separation in thermoelastic stress analysis Two-Dimensional Stress Wave Propagation in a Transversely Isotropic Cylinder X-Ray Stress Measurement for Textured Materials Endochronic analysis for viscoplastic collapse of a thin-walled tube under combined bending and external pressure Plastic Properties of Metal-Metal Composites : A Numerical Investigation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1