基于信息增益和Naïve贝叶斯迭代特征选择的文档分类

Chowdhury Mofizur Rahman, Lameya Afroze, Naznin Sultana Refath, Nafin Shawon
{"title":"基于信息增益和Naïve贝叶斯迭代特征选择的文档分类","authors":"Chowdhury Mofizur Rahman, Lameya Afroze, Naznin Sultana Refath, Nafin Shawon","doi":"10.1109/ICCITECHN.2018.8631971","DOIUrl":null,"url":null,"abstract":"Data Mining is the technique of analyzing large amount of data to determine the relation among large dataset. In this paper, we are discussing a new method for document classification. Usually Document classification has been done by using classifier algorithms. Naïve Bayes classifier is frequently used for classification which provides more accurate result for larger dataset. The usage of information gain with naïve Bayes classifier reduces the length of branches by selecting maximum gain which produces more accurate result in classification. We propose a new methodology of assigning weights using information gain with naïve Bayes classifier. The performance of naive Bayes learning with weighted gain increases accuracy than any other traditional methods using naïve Bayes. The experimental result indicates that the proposed system could improve the performance of naïve Bayes significantly.","PeriodicalId":355984,"journal":{"name":"2018 21st International Conference of Computer and Information Technology (ICCIT)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Iterative Feature Selection Using Information Gain & Naïve Bayes for Document Classification\",\"authors\":\"Chowdhury Mofizur Rahman, Lameya Afroze, Naznin Sultana Refath, Nafin Shawon\",\"doi\":\"10.1109/ICCITECHN.2018.8631971\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Data Mining is the technique of analyzing large amount of data to determine the relation among large dataset. In this paper, we are discussing a new method for document classification. Usually Document classification has been done by using classifier algorithms. Naïve Bayes classifier is frequently used for classification which provides more accurate result for larger dataset. The usage of information gain with naïve Bayes classifier reduces the length of branches by selecting maximum gain which produces more accurate result in classification. We propose a new methodology of assigning weights using information gain with naïve Bayes classifier. The performance of naive Bayes learning with weighted gain increases accuracy than any other traditional methods using naïve Bayes. The experimental result indicates that the proposed system could improve the performance of naïve Bayes significantly.\",\"PeriodicalId\":355984,\"journal\":{\"name\":\"2018 21st International Conference of Computer and Information Technology (ICCIT)\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 21st International Conference of Computer and Information Technology (ICCIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCITECHN.2018.8631971\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 21st International Conference of Computer and Information Technology (ICCIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCITECHN.2018.8631971","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

数据挖掘是分析大量数据以确定大数据集之间关系的技术。本文讨论了一种新的文档分类方法。通常文档分类是通过使用分类器算法来完成的。Naïve贝叶斯分类器经常用于分类,对于较大的数据集提供更准确的结果。在naïve贝叶斯分类器中使用信息增益,通过选择最大增益来减少分支的长度,从而在分类中产生更准确的结果。我们提出了一种利用naïve贝叶斯分类器的信息增益来分配权重的新方法。与使用naïve贝叶斯的任何其他传统方法相比,加权增益的朴素贝叶斯学习的性能提高了准确性。实验结果表明,该系统能显著提高naïve贝叶斯算法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Iterative Feature Selection Using Information Gain & Naïve Bayes for Document Classification
Data Mining is the technique of analyzing large amount of data to determine the relation among large dataset. In this paper, we are discussing a new method for document classification. Usually Document classification has been done by using classifier algorithms. Naïve Bayes classifier is frequently used for classification which provides more accurate result for larger dataset. The usage of information gain with naïve Bayes classifier reduces the length of branches by selecting maximum gain which produces more accurate result in classification. We propose a new methodology of assigning weights using information gain with naïve Bayes classifier. The performance of naive Bayes learning with weighted gain increases accuracy than any other traditional methods using naïve Bayes. The experimental result indicates that the proposed system could improve the performance of naïve Bayes significantly.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Automatic Document Feeding Scanner: A Low Cost Approach A Proposed Algorithm and Architecture for Automated Meeting Scheduling and Document Management Website Classification Using Word Based Multiple N -Gram Models and Random Search Oriented Feature Parameters Towards Design and Implementation of a Low-Cost EMG Signal Recorder for Application in Prosthetic Arm Control for Developing Countries Like Bangladesh Power Efficient Distant Controlled Smart Irrigation System for AMAN and BORO Rice
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1