{"title":"温度补偿体声学薄膜谐振器","authors":"K. M. Lakin, K. McCarron, J. McDonald","doi":"10.1109/ULTSYM.2000.922677","DOIUrl":null,"url":null,"abstract":"Thin film resonators have been made that exhibit a high degree of temperature compensation. These resonators are composed of piezoelectric aluminum nitride films, aluminum top and bottom electrodes, and are compensated with layers of silicon dioxide within the resonator. The resonators are fabricated with the solidly mounted resonator (SMR) configuration using a sequence of aluminum nitride and silicon dioxide reflector layers. Silicon dioxide has a positive temperature coefficient and can be used to offset the -25 ppm per degree C coefficient of aluminum nitride. Results are reported on hermetic packaging, temperature cycle testing, temperature coefficient measurements, and preliminary ageing.","PeriodicalId":350384,"journal":{"name":"2000 IEEE Ultrasonics Symposium. Proceedings. An International Symposium (Cat. No.00CH37121)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"77","resultStr":"{\"title\":\"Temperature compensated bulk acoustic thin film resonators\",\"authors\":\"K. M. Lakin, K. McCarron, J. McDonald\",\"doi\":\"10.1109/ULTSYM.2000.922677\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Thin film resonators have been made that exhibit a high degree of temperature compensation. These resonators are composed of piezoelectric aluminum nitride films, aluminum top and bottom electrodes, and are compensated with layers of silicon dioxide within the resonator. The resonators are fabricated with the solidly mounted resonator (SMR) configuration using a sequence of aluminum nitride and silicon dioxide reflector layers. Silicon dioxide has a positive temperature coefficient and can be used to offset the -25 ppm per degree C coefficient of aluminum nitride. Results are reported on hermetic packaging, temperature cycle testing, temperature coefficient measurements, and preliminary ageing.\",\"PeriodicalId\":350384,\"journal\":{\"name\":\"2000 IEEE Ultrasonics Symposium. Proceedings. An International Symposium (Cat. No.00CH37121)\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"77\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2000 IEEE Ultrasonics Symposium. Proceedings. An International Symposium (Cat. No.00CH37121)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ULTSYM.2000.922677\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2000 IEEE Ultrasonics Symposium. Proceedings. An International Symposium (Cat. No.00CH37121)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ULTSYM.2000.922677","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Temperature compensated bulk acoustic thin film resonators
Thin film resonators have been made that exhibit a high degree of temperature compensation. These resonators are composed of piezoelectric aluminum nitride films, aluminum top and bottom electrodes, and are compensated with layers of silicon dioxide within the resonator. The resonators are fabricated with the solidly mounted resonator (SMR) configuration using a sequence of aluminum nitride and silicon dioxide reflector layers. Silicon dioxide has a positive temperature coefficient and can be used to offset the -25 ppm per degree C coefficient of aluminum nitride. Results are reported on hermetic packaging, temperature cycle testing, temperature coefficient measurements, and preliminary ageing.