就像真实的东西:量子计算的快速弱模拟

S. Hillmich, I. Markov, R. Wille
{"title":"就像真实的东西:量子计算的快速弱模拟","authors":"S. Hillmich, I. Markov, R. Wille","doi":"10.1109/DAC18072.2020.9218555","DOIUrl":null,"url":null,"abstract":"Quantum computers promise significant speedups in solving problems intractable for conventional computers but, despite recent progress, remain limited in scaling and availability. Therefore, quantum software and hardware development heavily rely on simulation that runs on conventional computers. Most such approaches perform strong simulation in that they explicitly compute amplitudes of quantum states. However, such information is not directly observable from a physical quantum computer because quantum measurements produce random samples from probability distributions defined by those amplitudes. In this work, we focus on weak simulation that aims to produce outputs which are statistically indistinguishable from those of error-free quantum computers. We develop algorithms for weak simulation based on quantum state representation in terms of decision diagrams. We compare them to using state-vector arrays and binary search on prefix sums to perform sampling. Empirical validation shows, for the first time, that this enables mimicking of physical quantum computers of significant scale.","PeriodicalId":428807,"journal":{"name":"2020 57th ACM/IEEE Design Automation Conference (DAC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Just Like the Real Thing: Fast Weak Simulation of Quantum Computation\",\"authors\":\"S. Hillmich, I. Markov, R. Wille\",\"doi\":\"10.1109/DAC18072.2020.9218555\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Quantum computers promise significant speedups in solving problems intractable for conventional computers but, despite recent progress, remain limited in scaling and availability. Therefore, quantum software and hardware development heavily rely on simulation that runs on conventional computers. Most such approaches perform strong simulation in that they explicitly compute amplitudes of quantum states. However, such information is not directly observable from a physical quantum computer because quantum measurements produce random samples from probability distributions defined by those amplitudes. In this work, we focus on weak simulation that aims to produce outputs which are statistically indistinguishable from those of error-free quantum computers. We develop algorithms for weak simulation based on quantum state representation in terms of decision diagrams. We compare them to using state-vector arrays and binary search on prefix sums to perform sampling. Empirical validation shows, for the first time, that this enables mimicking of physical quantum computers of significant scale.\",\"PeriodicalId\":428807,\"journal\":{\"name\":\"2020 57th ACM/IEEE Design Automation Conference (DAC)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 57th ACM/IEEE Design Automation Conference (DAC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DAC18072.2020.9218555\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 57th ACM/IEEE Design Automation Conference (DAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DAC18072.2020.9218555","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

量子计算机有望显著加快解决传统计算机难以解决的问题,但尽管最近取得了进展,但在可扩展性和可用性方面仍然有限。因此,量子软件和硬件的发展严重依赖于传统计算机上运行的模拟。大多数这样的方法执行强模拟,因为它们明确地计算量子态的振幅。然而,这些信息不能从物理量子计算机上直接观察到,因为量子测量从由这些振幅定义的概率分布中产生随机样本。在这项工作中,我们专注于弱模拟,旨在产生与无错误量子计算机统计上无法区分的输出。我们开发了基于决策图的量子态表示的弱模拟算法。我们将它们与使用状态向量数组和对前缀和进行二分搜索来执行抽样进行比较。经验验证表明,这是第一次实现大规模物理量子计算机的模拟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Just Like the Real Thing: Fast Weak Simulation of Quantum Computation
Quantum computers promise significant speedups in solving problems intractable for conventional computers but, despite recent progress, remain limited in scaling and availability. Therefore, quantum software and hardware development heavily rely on simulation that runs on conventional computers. Most such approaches perform strong simulation in that they explicitly compute amplitudes of quantum states. However, such information is not directly observable from a physical quantum computer because quantum measurements produce random samples from probability distributions defined by those amplitudes. In this work, we focus on weak simulation that aims to produce outputs which are statistically indistinguishable from those of error-free quantum computers. We develop algorithms for weak simulation based on quantum state representation in terms of decision diagrams. We compare them to using state-vector arrays and binary search on prefix sums to perform sampling. Empirical validation shows, for the first time, that this enables mimicking of physical quantum computers of significant scale.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
FCNNLib: An Efficient and Flexible Convolution Algorithm Library on FPGAs AXI HyperConnect: A Predictable, Hypervisor-level Interconnect for Hardware Accelerators in FPGA SoC Pythia: Intellectual Property Verification in Zero-Knowledge Reuse-trap: Re-purposing Cache Reuse Distance to Defend against Side Channel Leakage Navigator: Dynamic Multi-kernel Scheduling to Improve GPU Performance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1