西非近海下刚果盆地盐后构造域

Abdhes Kumar Upadhyay, J. Jaiswal, Syamir B Osman
{"title":"西非近海下刚果盆地盐后构造域","authors":"Abdhes Kumar Upadhyay, J. Jaiswal, Syamir B Osman","doi":"10.2523/iptc-22839-ea","DOIUrl":null,"url":null,"abstract":"\n The objective of this study is to understand the configuration of different deformation styles in post-salt sedimentary succession of Lower Congo Basin. Emphasis is placed on structural characteristics with respect to the thickness of salt and the geometry of the base of salt detachment.\n Owing to its weak visco-plastic properties, salt is very effective at decoupling deformation in pre- and post-salt sequences. Gravity and density driven deformation in the post-salt sediments is predominately controlled by salt thickness and changes in dip at the base of salt. Variations in these elements change across the basin which control the nature and timing of trap development. Using regional 2D and 3D seismic depth cubes, interpretation focused on the Aptian Salt and post-salt Cretaceous-Tertiary sedimentary succession. Here we map and identify various deformation styles in salt tectonics across the basin within which we observe consistent trap geometries which are containing hydrocarbons and resulting one of the prolific basins in the world for oil production.\n The post-salt sediments, present a classic example of gravity driven deformation associated with salt tectonics at a passive margin. Gravity driven structuration of (i) Extension, (ii) Translation and (iii) Compression can be observed along regional dip-sections. Through detailed mapping, various sub-domains provide an insight into the regional structural trends and tectonic evolution in the post-salt succession. Overall, ten structural domains have been identified from Shelf to distal basin along the regional dip section.\n Well defined structural domains can play a major role in classifying the trapping styles for hydrocarbon accumulations in post-salt successions. Identification of these domains provides a framework to de-risk different trap styles or highlights those traps which carry a higher trap risk. Timing of trap formation due to salt movement also plays a major role to further de-risk these traps. The main source rock for Post-salt section is located in Senonian interval, the charge modelling suggests the peak expulsion of hydrocarbon in Early Miocene time, therefore those traps formed in Oligocene to Early Miocene intervals have higher chance of trapping hydrocarbons, however traps formed from Mid – Miocene to younger levels have higher risk of trapping smaller or no hydrocarbons due to lack of charge availability.","PeriodicalId":283978,"journal":{"name":"Day 1 Wed, March 01, 2023","volume":"110 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Post-Salt Structural Domains in Lower Congo Basin, Offhsore West Africa\",\"authors\":\"Abdhes Kumar Upadhyay, J. Jaiswal, Syamir B Osman\",\"doi\":\"10.2523/iptc-22839-ea\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The objective of this study is to understand the configuration of different deformation styles in post-salt sedimentary succession of Lower Congo Basin. Emphasis is placed on structural characteristics with respect to the thickness of salt and the geometry of the base of salt detachment.\\n Owing to its weak visco-plastic properties, salt is very effective at decoupling deformation in pre- and post-salt sequences. Gravity and density driven deformation in the post-salt sediments is predominately controlled by salt thickness and changes in dip at the base of salt. Variations in these elements change across the basin which control the nature and timing of trap development. Using regional 2D and 3D seismic depth cubes, interpretation focused on the Aptian Salt and post-salt Cretaceous-Tertiary sedimentary succession. Here we map and identify various deformation styles in salt tectonics across the basin within which we observe consistent trap geometries which are containing hydrocarbons and resulting one of the prolific basins in the world for oil production.\\n The post-salt sediments, present a classic example of gravity driven deformation associated with salt tectonics at a passive margin. Gravity driven structuration of (i) Extension, (ii) Translation and (iii) Compression can be observed along regional dip-sections. Through detailed mapping, various sub-domains provide an insight into the regional structural trends and tectonic evolution in the post-salt succession. Overall, ten structural domains have been identified from Shelf to distal basin along the regional dip section.\\n Well defined structural domains can play a major role in classifying the trapping styles for hydrocarbon accumulations in post-salt successions. Identification of these domains provides a framework to de-risk different trap styles or highlights those traps which carry a higher trap risk. Timing of trap formation due to salt movement also plays a major role to further de-risk these traps. The main source rock for Post-salt section is located in Senonian interval, the charge modelling suggests the peak expulsion of hydrocarbon in Early Miocene time, therefore those traps formed in Oligocene to Early Miocene intervals have higher chance of trapping hydrocarbons, however traps formed from Mid – Miocene to younger levels have higher risk of trapping smaller or no hydrocarbons due to lack of charge availability.\",\"PeriodicalId\":283978,\"journal\":{\"name\":\"Day 1 Wed, March 01, 2023\",\"volume\":\"110 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 1 Wed, March 01, 2023\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2523/iptc-22839-ea\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 1 Wed, March 01, 2023","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2523/iptc-22839-ea","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究的目的是了解下刚果盆地盐后沉积演替中不同变形样式的配置。重点放在与盐的厚度和盐分离基底的几何形状有关的结构特征上。由于其较弱的粘塑性,盐对盐前和盐后层序的解耦变形非常有效。盐后沉积物重力和密度驱动变形主要受盐厚和盐底倾角变化控制。这些元素的变化在整个盆地内都不同,它们控制着圈闭发育的性质和时间。利用区域二维和三维地震深度立方体,将解释重点放在阿普田盐和盐后白垩纪-第三纪沉积演替上。在这里,我们绘制并确定了整个盆地盐构造中的各种变形样式,在其中我们观察到一致的圈闭几何形状,这些圈闭几何形状含有碳氢化合物,从而成为世界上石油生产最丰富的盆地之一。后盐沉积是被动边缘重力驱动变形与盐构造相关的典型例子。沿区域倾角剖面可观察到重力驱动的(i)伸展、(ii)平移和(iii)压缩构造。通过详细的填图,揭示了盐后演替过程中区域构造走向和构造演化。总体而言,沿区域倾斜剖面,从陆架到远端盆地共确定了10个构造域。明确的构造域对盐后层序油气成藏圈闭类型划分具有重要意义。这些领域的识别提供了一个框架,以降低不同陷阱风格的风险,或突出那些具有较高陷阱风险的陷阱。由于盐的运动,圈闭形成的时机也对进一步降低这些圈闭的风险起着重要作用。盐后剖面主要烃源岩位于早中新世,电荷模拟表明早中新世为烃排烃高峰,渐新世至早中新世形成的圈闭具有较高的成藏机会,而中中新世至更年轻层位形成的圈闭由于缺乏电荷有效性,成藏较少或无油气的风险较高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Post-Salt Structural Domains in Lower Congo Basin, Offhsore West Africa
The objective of this study is to understand the configuration of different deformation styles in post-salt sedimentary succession of Lower Congo Basin. Emphasis is placed on structural characteristics with respect to the thickness of salt and the geometry of the base of salt detachment. Owing to its weak visco-plastic properties, salt is very effective at decoupling deformation in pre- and post-salt sequences. Gravity and density driven deformation in the post-salt sediments is predominately controlled by salt thickness and changes in dip at the base of salt. Variations in these elements change across the basin which control the nature and timing of trap development. Using regional 2D and 3D seismic depth cubes, interpretation focused on the Aptian Salt and post-salt Cretaceous-Tertiary sedimentary succession. Here we map and identify various deformation styles in salt tectonics across the basin within which we observe consistent trap geometries which are containing hydrocarbons and resulting one of the prolific basins in the world for oil production. The post-salt sediments, present a classic example of gravity driven deformation associated with salt tectonics at a passive margin. Gravity driven structuration of (i) Extension, (ii) Translation and (iii) Compression can be observed along regional dip-sections. Through detailed mapping, various sub-domains provide an insight into the regional structural trends and tectonic evolution in the post-salt succession. Overall, ten structural domains have been identified from Shelf to distal basin along the regional dip section. Well defined structural domains can play a major role in classifying the trapping styles for hydrocarbon accumulations in post-salt successions. Identification of these domains provides a framework to de-risk different trap styles or highlights those traps which carry a higher trap risk. Timing of trap formation due to salt movement also plays a major role to further de-risk these traps. The main source rock for Post-salt section is located in Senonian interval, the charge modelling suggests the peak expulsion of hydrocarbon in Early Miocene time, therefore those traps formed in Oligocene to Early Miocene intervals have higher chance of trapping hydrocarbons, however traps formed from Mid – Miocene to younger levels have higher risk of trapping smaller or no hydrocarbons due to lack of charge availability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Proper Well Spacings – A Supplementary Method to Maximize The Gulf of Thailand Development Project Value Seismic Driven Machine Learning to Improve Precision and Accelerate Screening Shallow Gas Potentials in Tunu Shallow Gas Zone, Mahakam Delta, Indonesia Rejuvenating Waterflood Reservoir in a Complex Geological Setting of a Matured Brown Field Intelligent Prediction of Downhole Drillstring Vibrations in Horizontal Wells by Employing Artificial Neural Network Sand Fill Clean-Out on Wireline Enables Access to Additional Perforation Zones in Gas Well Producer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1