连续维数和分布学习

Vsevolod Kapatsinski
{"title":"连续维数和分布学习","authors":"Vsevolod Kapatsinski","doi":"10.7551/mitpress/9780262037860.003.0006","DOIUrl":null,"url":null,"abstract":"This chapter describes the evidence for the existence of dimensions, focusing on the difference between the difficulty of attention shifts to a previously relevant vs. irrelevant dimension. It discusses the representation of continuous dimensions in the associationist framework. including population coding and thermometer coding, as well as the idea that learning can adjust the breadth of adjustable receptive fields. In phonetics, continuous dimensions have been argued to be split into categories via distributional learning. This chapter reviews what we know about distributional learning and argues that it relies on several distinct learning mechanisms, including error-driven learning at two distinct levels and building a generative model of the speaker. The emergence of perceptual equivalence regions from error-driven learning is discussed, and implications for language change briefly noted with an iterated learning simulation.","PeriodicalId":142675,"journal":{"name":"Changing Minds Changing Tools","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Continuous Dimensions and Distributional Learning\",\"authors\":\"Vsevolod Kapatsinski\",\"doi\":\"10.7551/mitpress/9780262037860.003.0006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This chapter describes the evidence for the existence of dimensions, focusing on the difference between the difficulty of attention shifts to a previously relevant vs. irrelevant dimension. It discusses the representation of continuous dimensions in the associationist framework. including population coding and thermometer coding, as well as the idea that learning can adjust the breadth of adjustable receptive fields. In phonetics, continuous dimensions have been argued to be split into categories via distributional learning. This chapter reviews what we know about distributional learning and argues that it relies on several distinct learning mechanisms, including error-driven learning at two distinct levels and building a generative model of the speaker. The emergence of perceptual equivalence regions from error-driven learning is discussed, and implications for language change briefly noted with an iterated learning simulation.\",\"PeriodicalId\":142675,\"journal\":{\"name\":\"Changing Minds Changing Tools\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Changing Minds Changing Tools\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7551/mitpress/9780262037860.003.0006\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Changing Minds Changing Tools","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7551/mitpress/9780262037860.003.0006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本章描述了维度存在的证据,重点关注注意力转移到先前相关维度和不相关维度的难度之间的差异。讨论了连续维在联想主义框架中的表示。包括人口编码和温度计编码,以及学习可以调节可调节接受域宽度的想法。在语音学中,连续维度被认为是通过分布学习来划分类别的。本章回顾了我们对分布式学习的了解,并认为它依赖于几种不同的学习机制,包括两个不同层次的错误驱动学习和建立说话人的生成模型。本文讨论了错误驱动学习中感知对等区域的出现,并通过迭代学习模拟简要说明了对语言变化的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Continuous Dimensions and Distributional Learning
This chapter describes the evidence for the existence of dimensions, focusing on the difference between the difficulty of attention shifts to a previously relevant vs. irrelevant dimension. It discusses the representation of continuous dimensions in the associationist framework. including population coding and thermometer coding, as well as the idea that learning can adjust the breadth of adjustable receptive fields. In phonetics, continuous dimensions have been argued to be split into categories via distributional learning. This chapter reviews what we know about distributional learning and argues that it relies on several distinct learning mechanisms, including error-driven learning at two distinct levels and building a generative model of the speaker. The emergence of perceptual equivalence regions from error-driven learning is discussed, and implications for language change briefly noted with an iterated learning simulation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Bringing It All Together From Associative Learning to Language Structure Automatization and Sound Change Bayes, Rationality, and Rashionality The Web in the Spider: Associative Learning Theory
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1