四层神经网络分段线性因子分析及其在局部放电数据建模中的应用

T. Yonekura, Y. Tsutsumi, S. Sigiyama, T. Kikuchi
{"title":"四层神经网络分段线性因子分析及其在局部放电数据建模中的应用","authors":"T. Yonekura, Y. Tsutsumi, S. Sigiyama, T. Kikuchi","doi":"10.1109/ANN.1993.264303","DOIUrl":null,"url":null,"abstract":"This paper presents the methodology of a nonlinear version of factor analysis by four layer feedforward neural networks and, as an example of its application, the result of modeling the structure of partial discharge data measured on a power cable. Here, the authors introduce the four layer auto associative memory with a reduced size of its second layer that learns identity mapping (the same pattern is used for both of the input data and the supervisory data for the network) and is used for data compression of the multivariate data, then they show that it is valid as a tool for so-called 'piecewise linear factor analysis'. They demonstrate the advantages of the piecewise linear factor analysis method over the current linear scheme regarding the modeling of the unknown structure of multivariate data such as electric pulse distribution data generated by simulated partial discharge.<<ETX>>","PeriodicalId":121897,"journal":{"name":"[1993] Proceedings of the Second International Forum on Applications of Neural Networks to Power Systems","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1993-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Piecewise linear factor analysis by four layer neural networks and its application for modeling the partial discharge data\",\"authors\":\"T. Yonekura, Y. Tsutsumi, S. Sigiyama, T. Kikuchi\",\"doi\":\"10.1109/ANN.1993.264303\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents the methodology of a nonlinear version of factor analysis by four layer feedforward neural networks and, as an example of its application, the result of modeling the structure of partial discharge data measured on a power cable. Here, the authors introduce the four layer auto associative memory with a reduced size of its second layer that learns identity mapping (the same pattern is used for both of the input data and the supervisory data for the network) and is used for data compression of the multivariate data, then they show that it is valid as a tool for so-called 'piecewise linear factor analysis'. They demonstrate the advantages of the piecewise linear factor analysis method over the current linear scheme regarding the modeling of the unknown structure of multivariate data such as electric pulse distribution data generated by simulated partial discharge.<<ETX>>\",\"PeriodicalId\":121897,\"journal\":{\"name\":\"[1993] Proceedings of the Second International Forum on Applications of Neural Networks to Power Systems\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1993-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"[1993] Proceedings of the Second International Forum on Applications of Neural Networks to Power Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ANN.1993.264303\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1993] Proceedings of the Second International Forum on Applications of Neural Networks to Power Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ANN.1993.264303","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了一种基于四层前馈神经网络的非线性因子分析方法,并以电力电缆局部放电数据的结构建模结果为例进行了应用。在这里,作者介绍了四层自动联想记忆,其第二层的大小减少了,可以学习身份映射(相同的模式用于网络的输入数据和监督数据),并用于多元数据的数据压缩,然后他们证明了它作为所谓的“分段线性因素分析”的工具是有效的。他们证明了分段线性因子分析方法在模拟局部放电产生的电脉冲分布数据等多元数据的未知结构建模方面优于当前的线性方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Piecewise linear factor analysis by four layer neural networks and its application for modeling the partial discharge data
This paper presents the methodology of a nonlinear version of factor analysis by four layer feedforward neural networks and, as an example of its application, the result of modeling the structure of partial discharge data measured on a power cable. Here, the authors introduce the four layer auto associative memory with a reduced size of its second layer that learns identity mapping (the same pattern is used for both of the input data and the supervisory data for the network) and is used for data compression of the multivariate data, then they show that it is valid as a tool for so-called 'piecewise linear factor analysis'. They demonstrate the advantages of the piecewise linear factor analysis method over the current linear scheme regarding the modeling of the unknown structure of multivariate data such as electric pulse distribution data generated by simulated partial discharge.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An adaptive fuzzy logic controller for AC-DC power systems Discrimination of partial discharge from noise in XLPE cable lines using a neural network Automation, with neural network based techniques, of short-term load forecasting at the Belgian national control centre Maximum electric power demand prediction by neural network Restoring current signals in real time using feedforward neural nets
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1