高维因子模型中变化点的估计与推断

Jushan Bai, Xu Han, Yutang Shi
{"title":"高维因子模型中变化点的估计与推断","authors":"Jushan Bai, Xu Han, Yutang Shi","doi":"10.2139/ssrn.2875193","DOIUrl":null,"url":null,"abstract":"In this paper, we consider the estimation of break points in high-dimensional factor models where the unobserved factors are estimated by principal component analysis (PCA). The factor loading matrix is assumed to have a structural break at an unknown time. We establish the conditions under which the least squares (LS) estimator is consistent for the break date. Our consistency result holds for both large and smaller breaks. We also find the LS estimator’s asymptotic distribution. Simulation results confirm that the break date can be accurately estimated by the LS even if the breaks are small. In two empirical applications, we implement our method to estimate break points in the U.S. stock market and U.S. macroeconomy, respectively.","PeriodicalId":425229,"journal":{"name":"ERN: Hypothesis Testing (Topic)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Estimation and Inference of Change Points in High Dimensional Factor Models\",\"authors\":\"Jushan Bai, Xu Han, Yutang Shi\",\"doi\":\"10.2139/ssrn.2875193\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we consider the estimation of break points in high-dimensional factor models where the unobserved factors are estimated by principal component analysis (PCA). The factor loading matrix is assumed to have a structural break at an unknown time. We establish the conditions under which the least squares (LS) estimator is consistent for the break date. Our consistency result holds for both large and smaller breaks. We also find the LS estimator’s asymptotic distribution. Simulation results confirm that the break date can be accurately estimated by the LS even if the breaks are small. In two empirical applications, we implement our method to estimate break points in the U.S. stock market and U.S. macroeconomy, respectively.\",\"PeriodicalId\":425229,\"journal\":{\"name\":\"ERN: Hypothesis Testing (Topic)\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ERN: Hypothesis Testing (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.2875193\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Hypothesis Testing (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.2875193","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

在本文中,我们考虑了高维因子模型中断点的估计,其中未观测因子是用主成分分析(PCA)估计的。假设因子加载矩阵在未知时间发生结构断裂。建立了断裂日期最小二乘估计量一致的条件。我们的一致性结果适用于大的和小的断裂。我们也得到了LS估计量的渐近分布。仿真结果表明,即使断裂很小,LS也能准确估计断裂日期。在两个实证应用中,我们分别在美国股市和美国宏观经济中实施了我们的方法来估计断点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Estimation and Inference of Change Points in High Dimensional Factor Models
In this paper, we consider the estimation of break points in high-dimensional factor models where the unobserved factors are estimated by principal component analysis (PCA). The factor loading matrix is assumed to have a structural break at an unknown time. We establish the conditions under which the least squares (LS) estimator is consistent for the break date. Our consistency result holds for both large and smaller breaks. We also find the LS estimator’s asymptotic distribution. Simulation results confirm that the break date can be accurately estimated by the LS even if the breaks are small. In two empirical applications, we implement our method to estimate break points in the U.S. stock market and U.S. macroeconomy, respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Lagrange-Multiplier Test for Large Heterogeneous Panel Data Models "Go Wild for a While!": A New Asymptotically Normal Test for Forecast Evaluation in Nested Models Tests of Conditional Predictive Ability: Existence, Size, and Power Inference for Large-Scale Linear Systems with Known Coefficients The Testing of Efficient Market Hypotheses: A Study of Indian Pharmaceutical Industry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1