Jonathan Cramb, S. Hocknull, R. Beck, S. Kealy, G. Price
{"title":"Urrayira whitei gen. et sp. nov.:来自澳大利亚昆士兰州中更新世的一种具有早期zalambdodonty的双齿兽(哺乳动物:有袋目动物)","authors":"Jonathan Cramb, S. Hocknull, R. Beck, S. Kealy, G. Price","doi":"10.1080/03115518.2023.2169351","DOIUrl":null,"url":null,"abstract":"Abstract Urrayira whitei gen. et sp. nov. is described based on dental remains from middle Pleistocene cave sites at Mount Etna, Queensland. Its higher-level systematic affinities are unclear but it appears to be a dasyuromorphian. It is unusual in having a specialized reduced dentition characterized by reduction of the stylar cusps, protocone and talonid, resulting in an incipiently zalambdodont morphology that emphasizes the shearing crests. In addition, only two upper premolars are present, and we assume that it is P3 that has been suppressed, as has occurred multiple times within Dasyuridae. Maximum parsimony and undated Bayesian analyses of a 174 morphological character matrix intended to resolve relationships within Dasyuromorphia, with a molecular scaffold enforced, suggest that Urrayira is a dasyurid. In the maximum parsimony analysis, Urrayira is sister to Planigale gilesi (which also lacks P3), whereas in the undated Bayesian analysis, Urrayira resolves as part of a trichotomy at the base of Dasyuridae, together with Sminthopsinae and Dasyurinae; however, support values are generally low throughout the tree. While the majority of rainforest-adapted taxa in the Mount Etna sites became either extinct or were locally extirpated at, or soon after, 280 ka, there is no evidence that U. whitei gen. et sp. nov. even persisted until that time. Urrayira whitei was likely a rainforest-specialist, thus may have been particularly vulnerable to incipient effects of the Mid-Brunhes climatic shift towards aridity that eventually drove the disappearance of the Mount Etna rainforest and its associated fauna. Jonathan Cramb* [jonathan.cramb@qm.qld.gov.au], Queensland Museum, PO Box 3300, South Brisbane BC, Queensland 4101, Australia; Scott Hocknull [scott.hocknull@qm.qld.gov.au], Queensland Museum, PO Box 3300, South Brisbane BC, Queensland 4101, Australia; Robin M. D. Beck [r.m.d.beck@salford.ac.uk], School of Science, Engineering and Environment, University of Salford, Manchester M5 4WT, UK; Shimona Kealy [shimona.kealy@anu.edu.au], Archaeology and Natural History, College of Asia and the Pacific, The Australian National University, Canberra, ACT, 2601, Australia; Gilbert J. Price [g.price1@uq.edu.au], School of Earth and Environmental Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia.","PeriodicalId":272731,"journal":{"name":"Alcheringa: An Australasian Journal of Palaeontology","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Urrayira whitei gen. et sp. nov.: a dasyuromorphian (Mammalia: Marsupialia) with incipient zalambdodonty from the Middle Pleistocene of Queensland, Australia\",\"authors\":\"Jonathan Cramb, S. Hocknull, R. Beck, S. Kealy, G. Price\",\"doi\":\"10.1080/03115518.2023.2169351\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Urrayira whitei gen. et sp. nov. is described based on dental remains from middle Pleistocene cave sites at Mount Etna, Queensland. Its higher-level systematic affinities are unclear but it appears to be a dasyuromorphian. It is unusual in having a specialized reduced dentition characterized by reduction of the stylar cusps, protocone and talonid, resulting in an incipiently zalambdodont morphology that emphasizes the shearing crests. In addition, only two upper premolars are present, and we assume that it is P3 that has been suppressed, as has occurred multiple times within Dasyuridae. Maximum parsimony and undated Bayesian analyses of a 174 morphological character matrix intended to resolve relationships within Dasyuromorphia, with a molecular scaffold enforced, suggest that Urrayira is a dasyurid. In the maximum parsimony analysis, Urrayira is sister to Planigale gilesi (which also lacks P3), whereas in the undated Bayesian analysis, Urrayira resolves as part of a trichotomy at the base of Dasyuridae, together with Sminthopsinae and Dasyurinae; however, support values are generally low throughout the tree. While the majority of rainforest-adapted taxa in the Mount Etna sites became either extinct or were locally extirpated at, or soon after, 280 ka, there is no evidence that U. whitei gen. et sp. nov. even persisted until that time. Urrayira whitei was likely a rainforest-specialist, thus may have been particularly vulnerable to incipient effects of the Mid-Brunhes climatic shift towards aridity that eventually drove the disappearance of the Mount Etna rainforest and its associated fauna. Jonathan Cramb* [jonathan.cramb@qm.qld.gov.au], Queensland Museum, PO Box 3300, South Brisbane BC, Queensland 4101, Australia; Scott Hocknull [scott.hocknull@qm.qld.gov.au], Queensland Museum, PO Box 3300, South Brisbane BC, Queensland 4101, Australia; Robin M. D. Beck [r.m.d.beck@salford.ac.uk], School of Science, Engineering and Environment, University of Salford, Manchester M5 4WT, UK; Shimona Kealy [shimona.kealy@anu.edu.au], Archaeology and Natural History, College of Asia and the Pacific, The Australian National University, Canberra, ACT, 2601, Australia; Gilbert J. Price [g.price1@uq.edu.au], School of Earth and Environmental Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia.\",\"PeriodicalId\":272731,\"journal\":{\"name\":\"Alcheringa: An Australasian Journal of Palaeontology\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Alcheringa: An Australasian Journal of Palaeontology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/03115518.2023.2169351\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Alcheringa: An Australasian Journal of Palaeontology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/03115518.2023.2169351","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Urrayira whitei gen. et sp. nov.: a dasyuromorphian (Mammalia: Marsupialia) with incipient zalambdodonty from the Middle Pleistocene of Queensland, Australia
Abstract Urrayira whitei gen. et sp. nov. is described based on dental remains from middle Pleistocene cave sites at Mount Etna, Queensland. Its higher-level systematic affinities are unclear but it appears to be a dasyuromorphian. It is unusual in having a specialized reduced dentition characterized by reduction of the stylar cusps, protocone and talonid, resulting in an incipiently zalambdodont morphology that emphasizes the shearing crests. In addition, only two upper premolars are present, and we assume that it is P3 that has been suppressed, as has occurred multiple times within Dasyuridae. Maximum parsimony and undated Bayesian analyses of a 174 morphological character matrix intended to resolve relationships within Dasyuromorphia, with a molecular scaffold enforced, suggest that Urrayira is a dasyurid. In the maximum parsimony analysis, Urrayira is sister to Planigale gilesi (which also lacks P3), whereas in the undated Bayesian analysis, Urrayira resolves as part of a trichotomy at the base of Dasyuridae, together with Sminthopsinae and Dasyurinae; however, support values are generally low throughout the tree. While the majority of rainforest-adapted taxa in the Mount Etna sites became either extinct or were locally extirpated at, or soon after, 280 ka, there is no evidence that U. whitei gen. et sp. nov. even persisted until that time. Urrayira whitei was likely a rainforest-specialist, thus may have been particularly vulnerable to incipient effects of the Mid-Brunhes climatic shift towards aridity that eventually drove the disappearance of the Mount Etna rainforest and its associated fauna. Jonathan Cramb* [jonathan.cramb@qm.qld.gov.au], Queensland Museum, PO Box 3300, South Brisbane BC, Queensland 4101, Australia; Scott Hocknull [scott.hocknull@qm.qld.gov.au], Queensland Museum, PO Box 3300, South Brisbane BC, Queensland 4101, Australia; Robin M. D. Beck [r.m.d.beck@salford.ac.uk], School of Science, Engineering and Environment, University of Salford, Manchester M5 4WT, UK; Shimona Kealy [shimona.kealy@anu.edu.au], Archaeology and Natural History, College of Asia and the Pacific, The Australian National University, Canberra, ACT, 2601, Australia; Gilbert J. Price [g.price1@uq.edu.au], School of Earth and Environmental Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia.