FedGradNorm:个性化联邦梯度标准化多任务学习

Matin Mortaheb, Cemil Vahapoglu, S. Ulukus
{"title":"FedGradNorm:个性化联邦梯度标准化多任务学习","authors":"Matin Mortaheb, Cemil Vahapoglu, S. Ulukus","doi":"10.48550/arXiv.2203.13663","DOIUrl":null,"url":null,"abstract":"Multi-task learning (MTL) is a novel framework to learn several tasks simultaneously with a single shared network where each task has its distinct personalized header network for fine-tuning. MTL can be implemented in federated learning settings as well, in which tasks are distributed across clients. In federated settings, the statistical heterogeneity due to different task complexities and data heterogeneity due to non-iid nature of local datasets can both degrade the learning performance of the system. In addition, tasks can negatively affect each other’s learning performance due to negative transference effects. To cope with these challenges, we propose FedGradNorm which uses a dynamic-weighting method to normalize gradient norms in order to balance learning speeds among different tasks. FedGradNorm improves the overall learning performance in a personalized federated learning setting. We provide convergence analysis for FedGradNorm by showing that it has an exponential convergence rate. We also conduct experiments on multi-task facial landmark (MTFL) and wireless communication system dataset (RadComDynamic). The experimental results show that our framework can achieve faster training performance compared to equal-weighting strategy. In addition to improving training speed, FedGradNorm also compensates for the imbalanced datasets among clients.","PeriodicalId":423807,"journal":{"name":"2022 IEEE 23rd International Workshop on Signal Processing Advances in Wireless Communication (SPAWC)","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"FedGradNorm: Personalized Federated Gradient-Normalized Multi-Task Learning\",\"authors\":\"Matin Mortaheb, Cemil Vahapoglu, S. Ulukus\",\"doi\":\"10.48550/arXiv.2203.13663\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multi-task learning (MTL) is a novel framework to learn several tasks simultaneously with a single shared network where each task has its distinct personalized header network for fine-tuning. MTL can be implemented in federated learning settings as well, in which tasks are distributed across clients. In federated settings, the statistical heterogeneity due to different task complexities and data heterogeneity due to non-iid nature of local datasets can both degrade the learning performance of the system. In addition, tasks can negatively affect each other’s learning performance due to negative transference effects. To cope with these challenges, we propose FedGradNorm which uses a dynamic-weighting method to normalize gradient norms in order to balance learning speeds among different tasks. FedGradNorm improves the overall learning performance in a personalized federated learning setting. We provide convergence analysis for FedGradNorm by showing that it has an exponential convergence rate. We also conduct experiments on multi-task facial landmark (MTFL) and wireless communication system dataset (RadComDynamic). The experimental results show that our framework can achieve faster training performance compared to equal-weighting strategy. In addition to improving training speed, FedGradNorm also compensates for the imbalanced datasets among clients.\",\"PeriodicalId\":423807,\"journal\":{\"name\":\"2022 IEEE 23rd International Workshop on Signal Processing Advances in Wireless Communication (SPAWC)\",\"volume\":\"63 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 23rd International Workshop on Signal Processing Advances in Wireless Communication (SPAWC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2203.13663\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 23rd International Workshop on Signal Processing Advances in Wireless Communication (SPAWC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2203.13663","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

多任务学习(MTL)是一种利用单个共享网络同时学习多个任务的新框架,其中每个任务都有其独特的个性化头网络以进行微调。MTL也可以在联邦学习设置中实现,其中任务分布在客户端之间。在联邦设置中,由于任务复杂性不同导致的统计异构和由于本地数据集的非id性质导致的数据异构都会降低系统的学习性能。此外,由于负迁移效应,任务会对彼此的学习绩效产生负向影响。为了应对这些挑战,我们提出了FedGradNorm,它使用动态加权方法对梯度规范进行归一化,以平衡不同任务之间的学习速度。FedGradNorm在个性化的联邦学习设置中提高了整体学习性能。我们通过证明FedGradNorm具有指数收敛率来提供收敛性分析。我们还在多任务面部地标(MTFL)和无线通信系统数据集(RadComDynamic)上进行了实验。实验结果表明,与等权策略相比,我们的框架可以获得更快的训练性能。除了提高训练速度外,FedGradNorm还补偿了客户端之间数据集的不平衡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
FedGradNorm: Personalized Federated Gradient-Normalized Multi-Task Learning
Multi-task learning (MTL) is a novel framework to learn several tasks simultaneously with a single shared network where each task has its distinct personalized header network for fine-tuning. MTL can be implemented in federated learning settings as well, in which tasks are distributed across clients. In federated settings, the statistical heterogeneity due to different task complexities and data heterogeneity due to non-iid nature of local datasets can both degrade the learning performance of the system. In addition, tasks can negatively affect each other’s learning performance due to negative transference effects. To cope with these challenges, we propose FedGradNorm which uses a dynamic-weighting method to normalize gradient norms in order to balance learning speeds among different tasks. FedGradNorm improves the overall learning performance in a personalized federated learning setting. We provide convergence analysis for FedGradNorm by showing that it has an exponential convergence rate. We also conduct experiments on multi-task facial landmark (MTFL) and wireless communication system dataset (RadComDynamic). The experimental results show that our framework can achieve faster training performance compared to equal-weighting strategy. In addition to improving training speed, FedGradNorm also compensates for the imbalanced datasets among clients.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Secure Multi-Antenna Coded Caching Deep Transfer Learning Based Radio Map Estimation for Indoor Wireless Communications A New Outage Probability Bound for IR-HARQ and Its Application to Power Adaptation SPAWC 2022 Cover Page A Sequential Experience-driven Contextual Bandit Policy for MIMO TWAF Online Relay Selection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1