具有积分隐私保证的近似鲁棒线性回归

Navoda Senavirathne, V. Torra
{"title":"具有积分隐私保证的近似鲁棒线性回归","authors":"Navoda Senavirathne, V. Torra","doi":"10.1109/PST.2018.8514161","DOIUrl":null,"url":null,"abstract":"Most of the privacy-preserving techniques suffer from an inevitable utility loss due to different perturbations carried out on the input data or the models in order to gain privacy. When it comes to machine learning (ML) based prediction models, accuracy is the key criterion for model selection. Thus, an accuracy loss due to privacy implementations is undesirable.The motivation of this work, is to implement the privacy model “integral privacy” and to evaluate its eligibility as a technique for machine learning model selection while preserving model utility. In this paper, a linear regression approximation method is implemented based on integral privacy which ensures high accuracy and robustness while maintaining a degree of privacy for ML models. The proposed method uses a re-sampling based estimator to construct linear regression model which is coupled with a rounding based data discretization method to support integral privacy principles. The implementation is evaluated in comparison with differential privacy in terms of privacy, accuracy and robustness of the output ML models. In comparison, integral privacy based solution provides a better solution with respect to the above criteria.","PeriodicalId":265506,"journal":{"name":"2018 16th Annual Conference on Privacy, Security and Trust (PST)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Approximating Robust Linear Regression With An Integral Privacy Guarantee\",\"authors\":\"Navoda Senavirathne, V. Torra\",\"doi\":\"10.1109/PST.2018.8514161\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Most of the privacy-preserving techniques suffer from an inevitable utility loss due to different perturbations carried out on the input data or the models in order to gain privacy. When it comes to machine learning (ML) based prediction models, accuracy is the key criterion for model selection. Thus, an accuracy loss due to privacy implementations is undesirable.The motivation of this work, is to implement the privacy model “integral privacy” and to evaluate its eligibility as a technique for machine learning model selection while preserving model utility. In this paper, a linear regression approximation method is implemented based on integral privacy which ensures high accuracy and robustness while maintaining a degree of privacy for ML models. The proposed method uses a re-sampling based estimator to construct linear regression model which is coupled with a rounding based data discretization method to support integral privacy principles. The implementation is evaluated in comparison with differential privacy in terms of privacy, accuracy and robustness of the output ML models. In comparison, integral privacy based solution provides a better solution with respect to the above criteria.\",\"PeriodicalId\":265506,\"journal\":{\"name\":\"2018 16th Annual Conference on Privacy, Security and Trust (PST)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 16th Annual Conference on Privacy, Security and Trust (PST)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PST.2018.8514161\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 16th Annual Conference on Privacy, Security and Trust (PST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PST.2018.8514161","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

大多数隐私保护技术由于对输入数据或模型进行不同的扰动而不可避免地遭受效用损失,以获得隐私。当涉及到基于机器学习(ML)的预测模型时,准确性是模型选择的关键标准。因此,由于隐私实现而造成的准确性损失是不可取的。这项工作的动机是实现隐私模型“整体隐私”,并评估其作为机器学习模型选择技术的资格,同时保持模型的实用性。本文提出了一种基于积分隐私的线性回归逼近方法,在保证机器学习模型的高准确性和鲁棒性的同时,保持了一定程度的隐私。该方法使用基于重采样的估计量构建线性回归模型,并结合基于舍入的数据离散方法来支持积分隐私原则。该实现在输出ML模型的隐私性、准确性和鲁棒性方面与差分隐私进行了比较评估。相比之下,基于积分隐私的解决方案在上述条件下提供了更好的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Approximating Robust Linear Regression With An Integral Privacy Guarantee
Most of the privacy-preserving techniques suffer from an inevitable utility loss due to different perturbations carried out on the input data or the models in order to gain privacy. When it comes to machine learning (ML) based prediction models, accuracy is the key criterion for model selection. Thus, an accuracy loss due to privacy implementations is undesirable.The motivation of this work, is to implement the privacy model “integral privacy” and to evaluate its eligibility as a technique for machine learning model selection while preserving model utility. In this paper, a linear regression approximation method is implemented based on integral privacy which ensures high accuracy and robustness while maintaining a degree of privacy for ML models. The proposed method uses a re-sampling based estimator to construct linear regression model which is coupled with a rounding based data discretization method to support integral privacy principles. The implementation is evaluated in comparison with differential privacy in terms of privacy, accuracy and robustness of the output ML models. In comparison, integral privacy based solution provides a better solution with respect to the above criteria.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Unmasking Android Obfuscation Tools Using Spatial Analysis Timing is Almost Everything: Realistic Evaluation of the Very Short Intermittent DDoS Attacks Managing Publicly Known Security Vulnerabilities in Software Systems Mutual Authentication in Electronic Voting Schemes Analysis and Evaluation of Syntactic Privacy Notions and Games
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1