基于坐标卷积的超声胸膜积液深度学习分割

Germain Morilhat, Naomi Kifle, Sandy FinesilverSmith, B. Ruijsink, V. Vergani, Habtamu Tegegne Desita, Z. Desita, E. Puyol-Antón, A. Carass, A. King
{"title":"基于坐标卷积的超声胸膜积液深度学习分割","authors":"Germain Morilhat, Naomi Kifle, Sandy FinesilverSmith, B. Ruijsink, V. Vergani, Habtamu Tegegne Desita, Z. Desita, E. Puyol-Antón, A. Carass, A. King","doi":"10.48550/arXiv.2208.03305","DOIUrl":null,"url":null,"abstract":"In many low-to-middle income (LMIC) countries, ultrasound is used for assessment of pleural effusion. Typically, the extent of the effusion is manually measured by a sonographer, leading to significant intra-/inter-observer variability. In this work, we investigate the use of deep learning (DL) to automate the process of pleural effusion segmentation from ultrasound images. On two datasets acquired in a LMIC setting, we achieve median Dice Similarity Coefficients (DSCs) of 0.82 and 0.74 respectively using the nnU-net DL model. We also investigate the use of coordinate convolutions in the DL model and find that this results in a statistically significant improvement in the median DSC on the first dataset to 0.85, with no significant change on the second dataset. This work showcases, for the first time, the potential of DL in automating the process of effusion assessment from ultrasound in LMIC settings where there is often a lack of experienced radiologists to perform such tasks.","PeriodicalId":347091,"journal":{"name":"DeCaF/FAIR@MICCAI","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Deep Learning-based Segmentation of Pleural Effusion From Ultrasound Using Coordinate Convolutions\",\"authors\":\"Germain Morilhat, Naomi Kifle, Sandy FinesilverSmith, B. Ruijsink, V. Vergani, Habtamu Tegegne Desita, Z. Desita, E. Puyol-Antón, A. Carass, A. King\",\"doi\":\"10.48550/arXiv.2208.03305\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In many low-to-middle income (LMIC) countries, ultrasound is used for assessment of pleural effusion. Typically, the extent of the effusion is manually measured by a sonographer, leading to significant intra-/inter-observer variability. In this work, we investigate the use of deep learning (DL) to automate the process of pleural effusion segmentation from ultrasound images. On two datasets acquired in a LMIC setting, we achieve median Dice Similarity Coefficients (DSCs) of 0.82 and 0.74 respectively using the nnU-net DL model. We also investigate the use of coordinate convolutions in the DL model and find that this results in a statistically significant improvement in the median DSC on the first dataset to 0.85, with no significant change on the second dataset. This work showcases, for the first time, the potential of DL in automating the process of effusion assessment from ultrasound in LMIC settings where there is often a lack of experienced radiologists to perform such tasks.\",\"PeriodicalId\":347091,\"journal\":{\"name\":\"DeCaF/FAIR@MICCAI\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"DeCaF/FAIR@MICCAI\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2208.03305\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"DeCaF/FAIR@MICCAI","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2208.03305","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在许多中低收入国家,超声被用于评估胸腔积液。通常情况下,积液的程度是由超声医师手动测量的,这导致了观察者内部/之间的显著差异。在这项工作中,我们研究了使用深度学习(DL)从超声图像中自动分割胸腔积液的过程。在LMIC设置中获得的两个数据集上,我们使用nnU-net DL模型分别获得了0.82和0.74的中位数骰子相似系数(dsc)。我们还研究了在DL模型中使用坐标卷积,并发现这导致第一个数据集的DSC中位数在统计上显着提高到0.85,而在第二个数据集上没有显着变化。这项工作首次展示了深度学习在LMIC环境中自动化超声积液评估过程中的潜力,在LMIC环境中,通常缺乏经验丰富的放射科医生来执行此类任务。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Deep Learning-based Segmentation of Pleural Effusion From Ultrasound Using Coordinate Convolutions
In many low-to-middle income (LMIC) countries, ultrasound is used for assessment of pleural effusion. Typically, the extent of the effusion is manually measured by a sonographer, leading to significant intra-/inter-observer variability. In this work, we investigate the use of deep learning (DL) to automate the process of pleural effusion segmentation from ultrasound images. On two datasets acquired in a LMIC setting, we achieve median Dice Similarity Coefficients (DSCs) of 0.82 and 0.74 respectively using the nnU-net DL model. We also investigate the use of coordinate convolutions in the DL model and find that this results in a statistically significant improvement in the median DSC on the first dataset to 0.85, with no significant change on the second dataset. This work showcases, for the first time, the potential of DL in automating the process of effusion assessment from ultrasound in LMIC settings where there is often a lack of experienced radiologists to perform such tasks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Towards Sparsified Federated Neuroimaging Models via Weight Pruning Split-U-Net: Preventing Data Leakage in Split Learning for Collaborative Multi-Modal Brain Tumor Segmentation Cluster Based Secure Multi-Party Computation in Federated Learning for Histopathology Images Deep Learning-based Segmentation of Pleural Effusion From Ultrasound Using Coordinate Convolutions Content-Aware Differential Privacy with Conditional Invertible Neural Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1