利用马来西亚卫星资料推算太阳辐射的方法

Vigneswaran Applasamy
{"title":"利用马来西亚卫星资料推算太阳辐射的方法","authors":"Vigneswaran Applasamy","doi":"10.1109/ISBEIA.2011.6088806","DOIUrl":null,"url":null,"abstract":"This article reviews several methods of calculating solar radiation from satellite derived earth atmospheric reflectivity from the visible channel. Most models calculate global and direct beam solar radiation on daily and hourly basis. Statistical models do not require precise information on atmospheric parameters whereas physical models apply these atmospheric parameters. These later evolved where authors developed hybrid models combining both. Despite a considerable number of publications which use satellite data to derive solar radiation, many models were modified and improved from existing models which were considered popular models. These popular models are briefly reviewed in this article. Most models were developed for the North American or European climate except for the physical model of Janjai et al 2005, which considered the tropical climate and the Brazillian Solar Radiation model. The models estimate hourly global solar irradiation with a RMSE between 6.8% and 25.6% while the daily global solar irradiation RMSE is between 12.9% and 18.13%.","PeriodicalId":358440,"journal":{"name":"2011 IEEE Symposium on Business, Engineering and Industrial Applications (ISBEIA)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Methods for deriving solar radiation from satellite data in Malaysia\",\"authors\":\"Vigneswaran Applasamy\",\"doi\":\"10.1109/ISBEIA.2011.6088806\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article reviews several methods of calculating solar radiation from satellite derived earth atmospheric reflectivity from the visible channel. Most models calculate global and direct beam solar radiation on daily and hourly basis. Statistical models do not require precise information on atmospheric parameters whereas physical models apply these atmospheric parameters. These later evolved where authors developed hybrid models combining both. Despite a considerable number of publications which use satellite data to derive solar radiation, many models were modified and improved from existing models which were considered popular models. These popular models are briefly reviewed in this article. Most models were developed for the North American or European climate except for the physical model of Janjai et al 2005, which considered the tropical climate and the Brazillian Solar Radiation model. The models estimate hourly global solar irradiation with a RMSE between 6.8% and 25.6% while the daily global solar irradiation RMSE is between 12.9% and 18.13%.\",\"PeriodicalId\":358440,\"journal\":{\"name\":\"2011 IEEE Symposium on Business, Engineering and Industrial Applications (ISBEIA)\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE Symposium on Business, Engineering and Industrial Applications (ISBEIA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISBEIA.2011.6088806\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE Symposium on Business, Engineering and Industrial Applications (ISBEIA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBEIA.2011.6088806","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文综述了几种利用卫星反演地球大气反射率计算太阳辐射的方法。大多数模式以每日和每小时为基础计算太阳总辐射和直射光束辐射。统计模式不需要大气参数的精确信息,而物理模式应用这些大气参数。后来,作者开发了结合两者的混合模型。尽管有相当多的出版物使用卫星数据推导太阳辐射,但许多模型都是根据被认为是流行模型的现有模型加以修改和改进的。本文将简要回顾这些流行的模型。除了Janjai等人2005年提出的考虑了热带气候的物理模式和巴西太阳辐射模式外,大多数模式都是针对北美或欧洲气候开发的。模式估计每小时全球太阳辐照的RMSE在6.8% ~ 25.6%之间,而每日全球太阳辐照的RMSE在12.9% ~ 18.13%之间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Methods for deriving solar radiation from satellite data in Malaysia
This article reviews several methods of calculating solar radiation from satellite derived earth atmospheric reflectivity from the visible channel. Most models calculate global and direct beam solar radiation on daily and hourly basis. Statistical models do not require precise information on atmospheric parameters whereas physical models apply these atmospheric parameters. These later evolved where authors developed hybrid models combining both. Despite a considerable number of publications which use satellite data to derive solar radiation, many models were modified and improved from existing models which were considered popular models. These popular models are briefly reviewed in this article. Most models were developed for the North American or European climate except for the physical model of Janjai et al 2005, which considered the tropical climate and the Brazillian Solar Radiation model. The models estimate hourly global solar irradiation with a RMSE between 6.8% and 25.6% while the daily global solar irradiation RMSE is between 12.9% and 18.13%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An integrated approach of analysing a production system's PMS: A case study A conceptual paper for human capital in the logistics industry in Malaysia Monitoring visitor impacts in Imbak Canyon Conservation Area, Sabah, Malaysia Buildability problems in the Malaysian building construction The impact of subprime mortgage crisis on the short-run and long-run volatility components of the Malaysian stock market
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1