主题建模来源于网络传播

Avik Ray, S. Sanghavi, S. Shakkottai
{"title":"主题建模来源于网络传播","authors":"Avik Ray, S. Sanghavi, S. Shakkottai","doi":"10.1145/2591971.2592018","DOIUrl":null,"url":null,"abstract":"Topic modeling refers to the task of inferring, only from data, the abstract ``topics\" that occur in a collection of content. In this paper we look at latent topic modeling in a setting where unlike traditional topic modeling (a) there are no/few features (like words in documents) that are directly indicative of content topics (e.g. un-annotated videos and images, URLs etc.), but (b) users share and view content over a social network. We provide a new algorithm for inferring both the topics in which every user is interested, and thus also the topics in each content piece. We study its theoretical performance and demonstrate its empirical effectiveness over standard topic modeling algorithms.","PeriodicalId":306456,"journal":{"name":"Measurement and Modeling of Computer Systems","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Topic modeling from network spread\",\"authors\":\"Avik Ray, S. Sanghavi, S. Shakkottai\",\"doi\":\"10.1145/2591971.2592018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Topic modeling refers to the task of inferring, only from data, the abstract ``topics\\\" that occur in a collection of content. In this paper we look at latent topic modeling in a setting where unlike traditional topic modeling (a) there are no/few features (like words in documents) that are directly indicative of content topics (e.g. un-annotated videos and images, URLs etc.), but (b) users share and view content over a social network. We provide a new algorithm for inferring both the topics in which every user is interested, and thus also the topics in each content piece. We study its theoretical performance and demonstrate its empirical effectiveness over standard topic modeling algorithms.\",\"PeriodicalId\":306456,\"journal\":{\"name\":\"Measurement and Modeling of Computer Systems\",\"volume\":\"60 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Measurement and Modeling of Computer Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2591971.2592018\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Measurement and Modeling of Computer Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2591971.2592018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

主题建模指的是仅从数据推断内容集合中出现的抽象“主题”的任务。在本文中,我们着眼于潜在主题建模的设置,与传统主题建模不同的是:(a)没有或很少有特征(如文档中的单词)直接指示内容主题(例如未注释的视频和图像,url等),但是(b)用户在社交网络上共享和查看内容。我们提供了一种新的算法来推断每个用户感兴趣的主题,从而推断每个内容片段中的主题。我们研究了它的理论性能,并证明了它在标准主题建模算法上的经验有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Topic modeling from network spread
Topic modeling refers to the task of inferring, only from data, the abstract ``topics" that occur in a collection of content. In this paper we look at latent topic modeling in a setting where unlike traditional topic modeling (a) there are no/few features (like words in documents) that are directly indicative of content topics (e.g. un-annotated videos and images, URLs etc.), but (b) users share and view content over a social network. We provide a new algorithm for inferring both the topics in which every user is interested, and thus also the topics in each content piece. We study its theoretical performance and demonstrate its empirical effectiveness over standard topic modeling algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Queueing delays in buffered multistage interconnection networks Data dissemination performance in large-scale sensor networks Index policies for a multi-class queue with convex holding cost and abandonments Neighbor-cell assisted error correction for MLC NAND flash memories Collecting, organizing, and sharing pins in pinterest: interest-driven or social-driven?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1