目标类别识别的区域检测与描述

E. F. Ersi, J. Zelek
{"title":"目标类别识别的区域检测与描述","authors":"E. F. Ersi, J. Zelek","doi":"10.1109/CRV.2007.55","DOIUrl":null,"url":null,"abstract":"The way images are decomposed and represented biases how well subsequent object learning and recognition methods will perform. We choose to initially represent the images by sets of local distinctive regions and their description vectors. We evaluate the problems of distinctive region detection and description in two separate stages, by first reviewing some of the state-of-the-art methods, and then discussing the methods we propose to use for object category recognition. In comparing the performance of our region detection-description technique for scale and rotation invariance with the performance of the other detection-description techniques, we find that our approach provides better results than existing methods, in the context of object category recognition. The evaluation consists of clustering similar descriptor regions and computing (1) the number of single measure clusters (measures intra-class sensitivity), (2) cluster precision clusters (measures how clusters are shared between different classes) and (3) the generalizability property of regions (measures matching to classes). Our technique, which is a variant on the Kadir-Brady saliency detector scored better and not worse than all the other methods evaluated.","PeriodicalId":304254,"journal":{"name":"Fourth Canadian Conference on Computer and Robot Vision (CRV '07)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Region detection and description for Object Category Recognition\",\"authors\":\"E. F. Ersi, J. Zelek\",\"doi\":\"10.1109/CRV.2007.55\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The way images are decomposed and represented biases how well subsequent object learning and recognition methods will perform. We choose to initially represent the images by sets of local distinctive regions and their description vectors. We evaluate the problems of distinctive region detection and description in two separate stages, by first reviewing some of the state-of-the-art methods, and then discussing the methods we propose to use for object category recognition. In comparing the performance of our region detection-description technique for scale and rotation invariance with the performance of the other detection-description techniques, we find that our approach provides better results than existing methods, in the context of object category recognition. The evaluation consists of clustering similar descriptor regions and computing (1) the number of single measure clusters (measures intra-class sensitivity), (2) cluster precision clusters (measures how clusters are shared between different classes) and (3) the generalizability property of regions (measures matching to classes). Our technique, which is a variant on the Kadir-Brady saliency detector scored better and not worse than all the other methods evaluated.\",\"PeriodicalId\":304254,\"journal\":{\"name\":\"Fourth Canadian Conference on Computer and Robot Vision (CRV '07)\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fourth Canadian Conference on Computer and Robot Vision (CRV '07)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CRV.2007.55\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fourth Canadian Conference on Computer and Robot Vision (CRV '07)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CRV.2007.55","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

图像分解和表示偏差的方式,以及后续对象学习和识别方法的表现。我们选择用一组局部特征区域及其描述向量来初始表示图像。我们在两个不同的阶段评估不同区域检测和描述的问题,首先回顾一些最先进的方法,然后讨论我们建议用于对象类别识别的方法。在将我们的区域检测描述技术在尺度和旋转不变性方面的性能与其他检测描述技术的性能进行比较时,我们发现我们的方法在对象类别识别方面比现有方法提供了更好的结果。评估包括聚类相似描述子区域和计算(1)单度量聚类的数量(衡量类内敏感性),(2)聚类精度聚类(衡量不同类之间如何共享聚类)和(3)区域的可泛化性(与类匹配的度量)。我们的技术是Kadir-Brady显着性检测器的一种变体,它的得分比所有其他评估方法都要高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Region detection and description for Object Category Recognition
The way images are decomposed and represented biases how well subsequent object learning and recognition methods will perform. We choose to initially represent the images by sets of local distinctive regions and their description vectors. We evaluate the problems of distinctive region detection and description in two separate stages, by first reviewing some of the state-of-the-art methods, and then discussing the methods we propose to use for object category recognition. In comparing the performance of our region detection-description technique for scale and rotation invariance with the performance of the other detection-description techniques, we find that our approach provides better results than existing methods, in the context of object category recognition. The evaluation consists of clustering similar descriptor regions and computing (1) the number of single measure clusters (measures intra-class sensitivity), (2) cluster precision clusters (measures how clusters are shared between different classes) and (3) the generalizability property of regions (measures matching to classes). Our technique, which is a variant on the Kadir-Brady saliency detector scored better and not worse than all the other methods evaluated.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Identification and Recognition of Objects in Color Stereo Images Using a Hierachial SOM Version and vergence control of a stereo camera head by fitting the movement into the Hering's law Using Feature Selection For Object Segmentation and Tracking Can Lucas-Kanade be used to estimate motion parallax in 3D cluttered scenes? A Simple Operator for Very Precise Estimation of Ellipses
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1