从科学代码中学习度量单位

Matthew Danish, Miltiadis Allamanis, Marc Brockschmidt, A. Rice, Dominic A. Orchard
{"title":"从科学代码中学习度量单位","authors":"Matthew Danish, Miltiadis Allamanis, Marc Brockschmidt, A. Rice, Dominic A. Orchard","doi":"10.1109/SE4Science.2019.00013","DOIUrl":null,"url":null,"abstract":"CamFort is our multi-purpose tool for lightweight analysis and verification of scientific Fortran code. One core feature provides units-of-measure verification (dimensional analysis) of programs, where users partially annotate programs with units-of-measure from which our tool checks consistency and infers any missing specifications. However, many users find it onerous to provide units-of-measure information for existing code, even in part. We have noted however that there are often many common patterns and clues about the intended units-of-measure contained within variable names, comments, and surrounding code context. In this work-in-progress paper, we describe how we are adapting our approach, leveraging machine learning techniques to reconstruct units-of-measure information automatically thus saving programmer effort and increasing the likelihood of adoption.","PeriodicalId":135738,"journal":{"name":"2019 IEEE/ACM 14th International Workshop on Software Engineering for Science (SE4Science)","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Learning Units-of-Measure from Scientific Code\",\"authors\":\"Matthew Danish, Miltiadis Allamanis, Marc Brockschmidt, A. Rice, Dominic A. Orchard\",\"doi\":\"10.1109/SE4Science.2019.00013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"CamFort is our multi-purpose tool for lightweight analysis and verification of scientific Fortran code. One core feature provides units-of-measure verification (dimensional analysis) of programs, where users partially annotate programs with units-of-measure from which our tool checks consistency and infers any missing specifications. However, many users find it onerous to provide units-of-measure information for existing code, even in part. We have noted however that there are often many common patterns and clues about the intended units-of-measure contained within variable names, comments, and surrounding code context. In this work-in-progress paper, we describe how we are adapting our approach, leveraging machine learning techniques to reconstruct units-of-measure information automatically thus saving programmer effort and increasing the likelihood of adoption.\",\"PeriodicalId\":135738,\"journal\":{\"name\":\"2019 IEEE/ACM 14th International Workshop on Software Engineering for Science (SE4Science)\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE/ACM 14th International Workshop on Software Engineering for Science (SE4Science)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SE4Science.2019.00013\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE/ACM 14th International Workshop on Software Engineering for Science (SE4Science)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SE4Science.2019.00013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

CamFort是我们的多用途工具,用于科学Fortran代码的轻量级分析和验证。一个核心特性提供了程序的度量单位验证(维度分析),用户可以用度量单位部分地注释程序,我们的工具可以根据这些度量单位检查一致性并推断任何缺失的规范。然而,许多用户发现为现有代码提供度量单位信息是非常繁重的,即使是部分的。然而,我们已经注意到,在变量名、注释和周围的代码上下文中,通常有许多关于预期度量单位的常见模式和线索。在这篇正在进行的论文中,我们描述了我们如何调整我们的方法,利用机器学习技术自动重建度量单位信息,从而节省程序员的工作并增加采用的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Learning Units-of-Measure from Scientific Code
CamFort is our multi-purpose tool for lightweight analysis and verification of scientific Fortran code. One core feature provides units-of-measure verification (dimensional analysis) of programs, where users partially annotate programs with units-of-measure from which our tool checks consistency and infers any missing specifications. However, many users find it onerous to provide units-of-measure information for existing code, even in part. We have noted however that there are often many common patterns and clues about the intended units-of-measure contained within variable names, comments, and surrounding code context. In this work-in-progress paper, we describe how we are adapting our approach, leveraging machine learning techniques to reconstruct units-of-measure information automatically thus saving programmer effort and increasing the likelihood of adoption.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Position Paper: Towards Usability as a First-Class Quality of HPC Scientific Software Releasing Scientific Software in GitHub: A Case Study on SWMM2PEST Susereum: Towards a Reward Structure for Sustainable Scientific Research Software Learning Units-of-Measure from Scientific Code An HPC Perspective on Generative Programming
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1